Introduction to Algorithms, Third Edition


Fundamental theorem of linear programming



Download 4,84 Mb.
Pdf ko'rish
bet575/618
Sana07.04.2022
Hajmi4,84 Mb.
#534272
1   ...   571   572   573   574   575   576   577   578   ...   618
Bog'liq
Introduction-to-algorithms-3rd-edition

Fundamental theorem of linear programming
We conclude this chapter by showing that the S
IMPLEX
procedure works. In par-
ticular, any linear program either is infeasible, is unbounded, or has an optimal
solution with a finite objective value. In each case, S
IMPLEX
acts appropriately.


892
Chapter 29
Linear Programming
Theorem 29.13 (Fundamental theorem of linear programming)
Any linear program
L
, given in standard form, either
1. has an optimal solution with a finite objective value,
2. is infeasible, or
3. is unbounded.
If
L
is infeasible, S
IMPLEX
returns “infeasible.” If
L
is unbounded, S
IMPLEX
returns “unbounded.” Otherwise, S
IMPLEX
returns an optimal solution with a finite
objective value.
Proof
By Lemma 29.12, if linear program
L
is infeasible, then S
IMPLEX
returns
“infeasible.” Now suppose that the linear program
L
is feasible. By Lemma 29.12,
I
NITIALIZE
-S
IMPLEX
returns a slack form for which the basic solution is feasible.
By Lemma 29.7, therefore, S
IMPLEX
either returns “unbounded” or terminates
with a feasible solution. If it terminates with a finite solution, then Theorem 29.10
tells us that this solution is optimal. On the other hand, if S
IMPLEX
returns “un-
bounded,” Lemma 29.2 tells us the linear program
L
is indeed unbounded. Since
S
IMPLEX
always terminates in one of these ways, the proof is complete.
Exercises
29.5-1
Give detailed pseudocode to implement lines 5 and 14 of I
NITIALIZE
-S
IMPLEX
.
29.5-2
Show that when the main loop of S
IMPLEX
is run by I
NITIALIZE
-S
IMPLEX
, it can
never return “unbounded.”
29.5-3
Suppose that we are given a linear program
L
in standard form, and suppose that
for both
L
and the dual of
L
, the basic solutions associated with the initial slack
forms are feasible. Show that the optimal objective value of
L
is
0
.
29.5-4
Suppose that we allow strict inequalities in a linear program. Show that in this
case, the fundamental theorem of linear programming does not hold.


29.5
The initial basic feasible solution
893
29.5-5
Solve the following linear program using S
IMPLEX
:
maximize
x
1
C
3x
2
subject to
x
1
x
2
8
x
1
x
2
3
x
1
C
4x
2
2
x
1
; x
2
0 :
29.5-6
Solve the following linear program using S
IMPLEX
:
maximize
x
1
2x
2
subject to
x
1
C
2x
2
4
2x
1
6x
2
12
x
2
1
x
1
; x
2
0 :
29.5-7
Solve the following linear program using S
IMPLEX
:
maximize
x
1
C
3x
2
subject to
x
1
C
x
2
1
x
1
x
2
3
x
1
C
4x
2
2
x
1
; x
2
0 :

Download 4,84 Mb.

Do'stlaringiz bilan baham:
1   ...   571   572   573   574   575   576   577   578   ...   618




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish