Hisoblash usullari fanidan laboratoriya ishlari


Urinma, vatarlar usullari iteratsiya usulining bir ko’rinishlari holos. Bular bir-biri bilan ni topish bilan farq qiladi. Iteratsiya usuliga chiqarilgan xossalar ularga ham tegishli bo’ladi



Download 3,72 Mb.
bet5/24
Sana13.07.2022
Hajmi3,72 Mb.
#790760
1   2   3   4   5   6   7   8   9   ...   24
Bog'liq
6.Hisoblash usullari fanidan LABORATORIYA ISHLARI

Urinma, vatarlar usullari iteratsiya usulining bir ko’rinishlari holos. Bular bir-biri bilan ni topish bilan farq qiladi. Iteratsiya usuliga chiqarilgan xossalar ularga ham tegishli bo’ladi.

Iteratsiya yoki ketma - ket yaqinlashish usuli metodik jihatdan eng sodda va qulay usullardan biridir, lekin hamma vaqt ildizga yaqinlashavermaydi. Iteratsiya usulini tenglamaga ko’llashdan oldin quyidagi teoremani bajarilishini tekshirib ko’rish kerak.


Teorema . Biror [a,b] oralikda differentsiallanuvchi bo’lsin. Agar shartni qanoatlantirsa iteratsiya usuli bilan topilgan ildiz haqiqiy ildizga yaqinlashadi.
Isbot.
Lagranj teoremasiga asosan

Bundan
(4)
(4) dan ko’rinadiki, bo’lganligi uchun n etarli darajada katta bo’lganda ildizni aniqligi shunchalik kichik bo’ladi.
I teratsiya usuli bilan yechishning algoritmining blok sxemasi va dasturi quyidagicha.

10 REM "Itaratsiya usuli"


20 DEF fnf (x) = 1 / (x + 1) ^ 2
30 INPUT a, e
40 x0 = a: n=0
50 x1 = fnf(x0)
60 n=n+1
70 IF ABS(x1 - x0) >= e THEN x0 = x1: GOTO 50
80 PRINT "x="; x1, "n="; n
90 END


Mustaqil yechish uchun misollar






Yechim bor oraliq

Aniqlik

Yechim




1

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

- 0,9216703

2

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

15,757300

3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

0,3221853

4

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

0,7390851

5

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

- 0,3646556

6

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

0,6411858

7

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

2,094551

8

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

0,7861513

9

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

1,526534

10

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

0,6723832

11

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

- 2,596072

12

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

- 0,6071017

13

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

1,213412

14

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

1,557146

15

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

1,403928

16

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

1,933754

17

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

- 0,6823278

18

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

3,789278

19

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

- 0,2879097

20

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

1,246919

21

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

- 0,770917

22

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

1,512135

23

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

0,8652716

24

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

0,4655714

25

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

0,682328

26

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

0,8767263

27

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

- 0,1347284

28

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

0,6506561

29

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

1,52138

30

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

0,7468819

31

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

1,423622

32

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

0,4321718

33

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

- 0,3221853

34

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

1,841406

35

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

- 1,847708

36

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

0,9286265

37

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

- 1,179509

38

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

0,309907

39

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

0,855418

40

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

0,4777551

41

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

1,134728

42

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

1,26073

43

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

1,322185

44

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

3,004679

45

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

2,258259

46

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

1,283429

47

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

1,164619

48

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

1,221022

49

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

1,059253

50

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

1,416468



LABORATORIYA ISHI № 8




Gauss usuli.

Bu metod bir necha hisoblash sxemalariga ega. Shulardan biri Gaussning kompakt sxemasini ko’rib chiqamiz. Ushbu sistema berilgan bo’lsin:


EMBED Equation.3 (1)
Faraz qilaylik, EMBED Equation.3 (etakchi element) bo’lsin, aks holda tenglamalarning o’rnini almashtirib, EMBED Equation.3 oldidagi koeffitsenti noldan farqli bo’lgan tenglamani birinchi o’rniga ko’chiramiz. Sistemadagi birinchi tenglamalarni barcha koeffitsentlarini EMBED Equation.3 ga bo’lib,
EMBED Equation.3 (2)
ni hosil qilamiz, bu erda, EMBED Equation.3 .
(2) tenglamadan foydalanib, (1) sistemaning qolgan tenglamalarida EMBED Equation.3 ni yo’qotish mumkin. Buning uchun (2) tenglamani ketma-ket EMBED Equation.3 larga ko’paytirib, mos ravishda sistemaning ikkinchi, uchinchi va h.k. tenglamalaridan ayiramiz. Natijada, quyidagi sistema hosil bo’ladi:
EMBED Equation.3 (3)

bu erda EMBED Equation.3 koeffitsentlar


EMBED Equation.3
formula yordamida hisoblanadi. Endi (3) sistema ustida ham shunga o’xshash almashtirishlar bajaramiz.
Buning uchun (3) sistemadagi birinchi tenglamaning barcha koeffitsentlarini etakchi element EMBED Equation.3 ga bo’lib,
EMBED Equation.3 (4)
ni hosil qilamiz, bu erda
EMBED Equation.3
(4) tenglama yordamida (3) sitemaning keyingi tenglamalarini yuqoridagidek EMBED Equation.3 ni yo’qotib,
EMBED Equation.3
sistemaga kelamiz, bu erda
EMBED Equation.3
Noma’lumlarni yo’qotish jarayonini davom ettirib va bu jarayonni EMBED Equation.3 - qadamgacha bajarish mumkin deb faraz qilib, EMBED Equation.3 - qadamda quyidagi sistemaga ega bo’lamiz:
EMBED Equation.3 (5)
bu erda
EMBED Equation.3 .
Faraz qilaylik, m mumkin bo’lgan oxirgi qadamning nomeri bo’lsin. Ikki hol bo’lishi mumkin: m=n yoki m. Agar m=n bo’lsa u vaqtda biz uchburchak matritsali va (1) sistemaga ekvivalent bo’lgan quyidagi
EMBED Equation.3 (6)
sistemaga ega bo’lamiz. Oxirgi sistemadan ketma-ket EMBED Equation.3 larni topish mumkin:
EMBED Equation.3 (7)
(6) uchburchak sistemaning koeffitsentlarini topish Gauss metodining togri yurishi, (7) sistemadan yechimni topish jarayoni teskari yurish deyiladi.
Faraz qilaylik, m bo’lsin va sistemaning m – va undan keyingi tenglamalari (5) ko’rinishga keltirilgan bo’lsin. Biz m – qadamni bajarilishi mumkin bo’lgan qadam deb hisoblagan edik, bu shuni bildiradiki (5) sistemaning ikkinchi tenglamasidan boshlab etakchi elementni ajratish mumkin emas, barcha EMBED Equation.3 EMBED Equation.3 nolga teng va (5) sistema quyidagi ko’rinishga ega
EMBED Equation.3
Agar bunda barcha ozod hadlar EMBED Equation.3 EMBED Equation.3 nolga teng bo’lsa, u holda biz faqat yagona birinchi tenglamaga ega bo’lamiz.
Barcha qadamdagi birinchi tenglamalarni birlashtirib, quyidagi sistemani hosil qilamiz:
EMBED Equation.3
Bu sistemadan biz EMBED Equation.3 noma’lumlarni EMBED Equation.3 noma’lumlar va ozod hadlar yordamida ifodalab olishimiz mumkin. Bu holda (1) sistema cheksiz ko’p yechimga ega bo’ladi. Agar m bo’lib, hech bo’lmaganda birorta EMBED Equation.3 EMBED Equation.3 bo’lsa, u holda (1) sistema yechimga ega bo’lmaydi.
Qo’lda hisoblanayotganda hatoga yo’l qo’ymaslik uchun, hisoblash jarayonini kontrol qilish ma’quldir. Buning uchun biz (1) matritsa satrlaridagi elementlar va ozod hadning yig’indisidan tuzilgan kontrol
EMBED Equation.3 (8)
yig’indidan foydalanamiz.
Agar EMBED Equation.3 larni (1) sistemaning ozod hadlari deb qabul qilsak, u holda almashtirilgan
EMBED Equation.3 (9)
sistemaning yechimi EMBED Equation.3 (1) sistemaning yechimi EMBED Equation.3 orqali quyidagicha ifodalanadi:
EMBED Equation.3 (10)
Haqiqatan ham, (10) ni (9) sistemaga qo’ysak, (1) sistema va (8) formulaga ko’ra
EMBED Equation.3
ayniyatga ega bo’lamiz.
Agar satr elementlar ustida bajarilgan amallarni har bir satrdagi kontrol yig’indi ustida ham bajarsak va hisoblashlar xatosiz bajarilgan bo’lsa, u holda kontrol yig’indilardan tuzilgan ustunning xar bir elementi mos ravishda almashtirilgan satrlar elementlarining yig’indisiga teng bo’ladi. Bu hol esa to’g’ri yurishni kontrol qilish uchun xizmat qiladi. Teskari yurishda esa, kontrol EMBED Equation.3 larni topish uchun bajariladi.
Tenglamalar sistemasi qo’lda echilganda hisoblashlarni 1-jadvalda ko’rsatilgan Gaussning kompakt sxemasi bo’yicha olib borish ma’quldir. Soddalik uchun jadvalda to’rtta noma’lumli to’rtta tenglamalar sistemasini yechish sxemasi keltirilgan.
Gauss metodi bilan n ta noma’lumli chiziqli algebraik tenglamalar sistemasini yechish uchun bajariladigan arifmetik amallarning miqdori quyidagilardan iborat. EMBED Equation.3 ta ko’paytirish va bo’lish EMBED Equation.3 ta qo’shish.
Yagona bo’lish jadvali.
1-jadval

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

Ozod hadlar




Sxema qismlari

EMBED Equation.3
EMBED Equation.3
EMBED Equation.3
EMBED Equation.3

1


EMBED Equation.3
EMBED Equation.3
EMBED Equation.3
EMBED Equation.3

EMBED Equation.3



EMBED Equation.3
EMBED Equation.3
EMBED Equation.3
EMBED Equation.3

EMBED Equation.3



EMBED Equation.3
EMBED Equation.3
EMBED Equation.3
EMBED Equation.3

EMBED Equation.3



EMBED Equation.3
EMBED Equation.3
EMBED Equation.3
EMBED Equation.3

EMBED Equation.3



EMBED Equation.3
EMBED Equation.3
EMBED Equation.3
EMBED Equation.3

EMBED Equation.3






Download 3,72 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   24




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish