Hisoblash usullari fanidan laboratoriya ishlari


Lagranj interpoliyatsion formulasi doir misollar



Download 3,72 Mb.
bet21/24
Sana13.07.2022
Hajmi3,72 Mb.
#790760
1   ...   16   17   18   19   20   21   22   23   24
Bog'liq
6.Hisoblash usullari fanidan LABORATORIYA ISHLARI

Lagranj interpoliyatsion formulasi doir misollar.





X


Variantlar

X0









1

2

3

4

5







Y=

Y=

Y= EMBED Equation.3

Y= EMBED Equation.3

Y= EMBED Equation.3







X0=0.41

Y0=1.5068

Y0=0.4346

Y0=0.0998

Y0=0.9171

Y0=0.6403

0.38







X1=0.46

Y1=1.5841

Y1=0.4954

Y1=0.4439

Y1=0.8961

Y1=0.6782

0.43







X2=0.52

Y2=1.6820

Y2=0.5725

Y2=0.4969

Y2=0.8678

Y2=0.7211

0.48







X3=0.60

Y3=1.8221

Y3=0.6841

Y3=0.5646

Y3=0.8253

Y3=0.7746

0.74







X4=0.65

Y4=1.9155

Y4=0.7602

Y4=0.6052

Y4=0.7961

Y4=0.8062










X5=0.72

Y5=2.05444

Y5=0.9316

Y5=0.6593

Y5=0.7518

Y5=0.8485










X


Variantlar

X0






6

7

8

9

10




Y=

Y= EMBED Equation.3

Y= EMBED Equation.3

Y= EMBED Equation.3

Y= EMBED Equation.3




X0=0,11

Y0=1,1163

Y0=0,1104

Y0=0,1098

Y0=0,9940

Y0=0,3317

0,08




X1=0,16

Y1=1,1735

Y1=0,1514

Y1=0,1593

Y1=0,9872

Y1=0,4000

0,18




X2=0,22

Y2=1,2461

Y2=0,2236

Y2=0,2182

Y2=0,9759

Y2=0,4690

0,33




X3=0,30

Y3=1,3498

Y3=0,3093

Y3=0,2956

Y3=0,9553

Y3=0,5477

0,44




X4=0,35

Y4=1,4191

Y4=0,3650

Y4=0,3429

Y4=0,9394

Y4=0,5916







X5=0,42

Y5=1,5220

Y5=0,4466

Y5=0,4078

Y5=0,9131

Y5=0,6481







X


Variantlar

X0






11

12

13

14

15




Y=

Y= EMBED Equation.3

Y= EMBED Equation.3

Y= EMBED Equation.3

Y= EMBED Equation.3




X0=0.21

Y0=1.2337

Y0=0.2131

Y0=0.2085

Y0=0.9780

Y0=0.4582

0.19




X1=0.26

Y1=1.2969

Y1=0.2660

Y1=0.2571

Y1=0.9664

Y1=0.5099

0.28




X2=0.32

Y2=1.3771

Y2=0.3314

Y2=0.3146

Y2=0.9492

Y2=0.5657

0.43




X3=0.40

Y3=1.4918

Y3=0.4228

Y3=0.3894

Y3=0.9211

Y3=0.6324

0.54




X4=0.45

Y4=1.5683

Y4=0.4830

Y4=0.4350

Y4=0.9004

Y4=0.6708







X5=0.52

Y5=1.6820

Y5=0.5726

Y5=0.4969

Y5=0.8678

Y5=0.7211







X


Variantlar

X0






16

17

18

19

20




Y=

Y= EMBED Equation.3

Y= EMBED Equation.3

Y= EMBED Equation.3

Y= EMBED Equation.3




X0=0.31

Y0=1.3634

Y0=0.3208

Y0=0.3051

Y0=0.9523

Y0=0.5568

0.28




X1=0.36

Y1=1.4333

Y1=0.3776

Y1=0.3523

Y1=0.9359

Y1=0.6000

0.33




X2=0.42

Y2=1.5220

Y2=0.4466

Y2=0.4078

Y2=0.9131

Y2=0.6481

0.53




X3=0.50

Y3=1.6487

Y3=0.5463

Y3=0.4794

Y3=0.8776

Y3=0.7071

0.64




X4=0.68

Y4=1.7332

Y4=0.6131

Y4=0.5227

Y4=0.8525

Y4=0.7416







X5=0.62

Y5=1.8539

Y5=0.7139

Y5=0.5810

Y5=0.8139

Y5=0.7874




X


Variantlar

X0






21

22

23

24

25




Y=

Y= EMBED Equation.3

Y= EMBED Equation.3

Y= EMBED Equation.3

Y= EMBED Equation.3




X0=051

Y0=1.6653

Y0=0.5593

Y0=0.4882

Y0=08722

Y0=0.7141

0.48




X1=0.56

Y1=1.7506

Y1=0.6269

Y1=0.5312

Y1=0.8472

Y1=0.7483

0.58




X2=0.62

Y2=1.8589

Y2=0.7139

Y2=0.5810

Y2=0.8139

Y2=0.7874

0.73




X3=0.70

Y3=2.0138

Y3=0.8423

Y3=0.6442

Y3=0.7648

Y3=0.8367

0.84




X4=0.75

Y4=2.1170

Y4=0.9316

Y4=0.6816

Y4=0.7317

Y4=0.8660







X5=0.82

Y5=2.2705

Y5=1.0717

Y5=0.7311

Y5=0.6822

Y5=0.9055









LABORATORIYA ISHI № 17


Tugunlar orasidagi masofa teng bo’lmaganda Nyuton
interpolyatsion formulasi.
Bo’lingan chekli ayirmalar. Biz oldin chekli ayirmalar tushunchasi bilan tanishgan edik va uning teng oraliqli interpolyatsion formulalarda ishlatilishini ko’rib o’tgan edik.
Tugunlar orasi teng bo’lmagan interpolyatsion formulalar va empirik formulalarda bo’lingan chekli ayirmalar ishlatiladi.
Bizga EMBED Equation.3 berilgan bo’lsin bu funktsiya jadval usulida berilgan bo’lsin argumentning EMBED Equation.3 qiymatlari mos keladi.
Birinchi tartibli bo’lingan chekli ayirma
EMBED Equation.3
va hokazo.
Shunga o’xshash ikkinchi tartibli bo’lingan chekli ayirma
EMBED Equation.3
Umuman tartibli bo’lingan chekli ayirmani EMBED Equation.3 tartibli bo’lingan chekli ayirma bilan ifodalash mumkin.

EMBED Equation.3 (1)


Bo’lingan chekli ayirmalarda elementlarning o’rnini almashtirgan bilan qiymati o’zgarmaydi (simmetrik funksiya).


EMBED Equation.3 (2)
Amaliy vazifalarni bajarishda bo’lingan chekli ayirmalar jadvalidan foydalangan ma’qul.
Bo’lingan chekli ayirmalar jadvali.

X


Y

BO’LINGAN chekli ayirmalar


1-tartibli

2-tartibli

3-tartibli

4-tartibli

X0

y 0



















[x0, x1]










X1

y 1




[x0 ,x1 , x2]













[x1, x2]




[x0 ,x1 , x2 , x3]




X2

y2




[x1 ,x2 , x3]




[x0 ,x1 , x2 , x3]







[x2, x3]




[x1 ,x2 , x3 , x4]




X3

y3




[x2 ,x3 , x4]













[x3, x4]










X4

y4































Bo’lingan chekli ayirmalar tushunchasi yordamida Lagranj interpolyatsion formulasini Nyutonning birinchi interpolyatsion formulasiga o’xshash interpolyatsion formula bilan yechish mumkin. Buning uchun bitta lemma isbot qilamiz.


n –tartibli ko’phadning n+1 tartibli bo’lingan chekli ayirmasi haqidagi lemma.
Lemma: n – tartibli EMBED Equation.3 ko’phadning EMBED Equation.3 tartibli bo’lingan chekli ayirmasi nolga teng.
Isbot qilish kerak EMBED Equation.3
Isbot:
EMBED Equation.3
EMBED Equation.3 ko’phad EMBED Equation.3 tartiblidir.
EMBED Equation.3
EMBED Equation.3 tartibli ko’phaddir.
Chunki EMBED Equation.3 ko’phadning ildizi. EMBED Equation.3 .
Demak Bezu teoremasiga asosan EMBED Equation.3 ga bo’linadi. Huddi shunday mulohaza qilsak
EMBED Equation.3
ko’phad nolinchi darajali ko’phaddir ya’ni
EMBED Equation.3
Bundan
EMBED Equation.3
Lemma isbot qilindi.
EMBED Equation.3 - n-darajali Lagranj interpolyatsion formulasi bo’lsin
EMBED Equation.3 (1)
Tubandagi belgilashlarni kiritamiz.
EMBED Equation.3 (2)
Lemmaga asosan
EMBED Equation.3 (3)
Ta’rifga asosan
EMBED Equation.3 (4)
Bundan
EMBED Equation.3 (5)
Bo’lingan chekli ayirmaning ta’rifiga asosan
EMBED Equation.3 (6)
(5) va (6) dan foydalanib
EMBED Equation.3
EMBED Equation.3 Lemmaga asosan.
EMBED Equation.3 (7)
(7) formulaga tugunlar orasidagi masofa teng bo’lganda Nyuton interpolyatsion formulasi deyiladi.

Download 3,72 Mb.

Do'stlaringiz bilan baham:
1   ...   16   17   18   19   20   21   22   23   24




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish