Lagranj interpoliyatsion formulasi doir misollar.
|
X
|
Variantlar
|
X0
|
|
|
1
|
2
|
3
|
4
|
5
|
|
|
Y=
|
Y=
|
Y= EMBED Equation.3
|
Y= EMBED Equation.3
|
Y= EMBED Equation.3
|
|
|
X0=0.41
|
Y0=1.5068
|
Y0=0.4346
|
Y0=0.0998
|
Y0=0.9171
|
Y0=0.6403
|
0.38
|
|
|
X1=0.46
|
Y1=1.5841
|
Y1=0.4954
|
Y1=0.4439
|
Y1=0.8961
|
Y1=0.6782
|
0.43
|
|
|
X2=0.52
|
Y2=1.6820
|
Y2=0.5725
|
Y2=0.4969
|
Y2=0.8678
|
Y2=0.7211
|
0.48
|
|
|
X3=0.60
|
Y3=1.8221
|
Y3=0.6841
|
Y3=0.5646
|
Y3=0.8253
|
Y3=0.7746
|
0.74
|
|
|
X4=0.65
|
Y4=1.9155
|
Y4=0.7602
|
Y4=0.6052
|
Y4=0.7961
|
Y4=0.8062
|
|
|
|
X5=0.72
|
Y5=2.05444
|
Y5=0.9316
|
Y5=0.6593
|
Y5=0.7518
|
Y5=0.8485
|
|
|
|
X
|
Variantlar
|
X0
|
|
6
|
7
|
8
|
9
|
10
|
|
Y=
|
Y= EMBED Equation.3
|
Y= EMBED Equation.3
|
Y= EMBED Equation.3
|
Y= EMBED Equation.3
|
|
X0=0,11
|
Y0=1,1163
|
Y0=0,1104
|
Y0=0,1098
|
Y0=0,9940
|
Y0=0,3317
|
0,08
|
|
X1=0,16
|
Y1=1,1735
|
Y1=0,1514
|
Y1=0,1593
|
Y1=0,9872
|
Y1=0,4000
|
0,18
|
|
X2=0,22
|
Y2=1,2461
|
Y2=0,2236
|
Y2=0,2182
|
Y2=0,9759
|
Y2=0,4690
|
0,33
|
|
X3=0,30
|
Y3=1,3498
|
Y3=0,3093
|
Y3=0,2956
|
Y3=0,9553
|
Y3=0,5477
|
0,44
|
|
X4=0,35
|
Y4=1,4191
|
Y4=0,3650
|
Y4=0,3429
|
Y4=0,9394
|
Y4=0,5916
|
|
|
X5=0,42
|
Y5=1,5220
|
Y5=0,4466
|
Y5=0,4078
|
Y5=0,9131
|
Y5=0,6481
|
|
|
X
|
Variantlar
|
X0
|
|
11
|
12
|
13
|
14
|
15
|
|
Y=
|
Y= EMBED Equation.3
|
Y= EMBED Equation.3
|
Y= EMBED Equation.3
|
Y= EMBED Equation.3
|
|
X0=0.21
|
Y0=1.2337
|
Y0=0.2131
|
Y0=0.2085
|
Y0=0.9780
|
Y0=0.4582
|
0.19
|
|
X1=0.26
|
Y1=1.2969
|
Y1=0.2660
|
Y1=0.2571
|
Y1=0.9664
|
Y1=0.5099
|
0.28
|
|
X2=0.32
|
Y2=1.3771
|
Y2=0.3314
|
Y2=0.3146
|
Y2=0.9492
|
Y2=0.5657
|
0.43
|
|
X3=0.40
|
Y3=1.4918
|
Y3=0.4228
|
Y3=0.3894
|
Y3=0.9211
|
Y3=0.6324
|
0.54
|
|
X4=0.45
|
Y4=1.5683
|
Y4=0.4830
|
Y4=0.4350
|
Y4=0.9004
|
Y4=0.6708
|
|
|
X5=0.52
|
Y5=1.6820
|
Y5=0.5726
|
Y5=0.4969
|
Y5=0.8678
|
Y5=0.7211
|
|
|
X
|
Variantlar
|
X0
|
|
16
|
17
|
18
|
19
|
20
|
|
Y=
|
Y= EMBED Equation.3
|
Y= EMBED Equation.3
|
Y= EMBED Equation.3
|
Y= EMBED Equation.3
|
|
X0=0.31
|
Y0=1.3634
|
Y0=0.3208
|
Y0=0.3051
|
Y0=0.9523
|
Y0=0.5568
|
0.28
|
|
X1=0.36
|
Y1=1.4333
|
Y1=0.3776
|
Y1=0.3523
|
Y1=0.9359
|
Y1=0.6000
|
0.33
|
|
X2=0.42
|
Y2=1.5220
|
Y2=0.4466
|
Y2=0.4078
|
Y2=0.9131
|
Y2=0.6481
|
0.53
|
|
X3=0.50
|
Y3=1.6487
|
Y3=0.5463
|
Y3=0.4794
|
Y3=0.8776
|
Y3=0.7071
|
0.64
|
|
X4=0.68
|
Y4=1.7332
|
Y4=0.6131
|
Y4=0.5227
|
Y4=0.8525
|
Y4=0.7416
|
|
|
X5=0.62
|
Y5=1.8539
|
Y5=0.7139
|
Y5=0.5810
|
Y5=0.8139
|
Y5=0.7874
|
|
X
|
Variantlar
|
X0
|
|
21
|
22
|
23
|
24
|
25
|
|
Y=
|
Y= EMBED Equation.3
|
Y= EMBED Equation.3
|
Y= EMBED Equation.3
|
Y= EMBED Equation.3
|
|
X0=051
|
Y0=1.6653
|
Y0=0.5593
|
Y0=0.4882
|
Y0=08722
|
Y0=0.7141
|
0.48
|
|
X1=0.56
|
Y1=1.7506
|
Y1=0.6269
|
Y1=0.5312
|
Y1=0.8472
|
Y1=0.7483
|
0.58
|
|
X2=0.62
|
Y2=1.8589
|
Y2=0.7139
|
Y2=0.5810
|
Y2=0.8139
|
Y2=0.7874
|
0.73
|
|
X3=0.70
|
Y3=2.0138
|
Y3=0.8423
|
Y3=0.6442
|
Y3=0.7648
|
Y3=0.8367
|
0.84
|
|
X4=0.75
|
Y4=2.1170
|
Y4=0.9316
|
Y4=0.6816
|
Y4=0.7317
|
Y4=0.8660
|
|
|
X5=0.82
|
Y5=2.2705
|
Y5=1.0717
|
Y5=0.7311
|
Y5=0.6822
|
Y5=0.9055
|
|
|
LABORATORIYA ISHI № 17
Tugunlar orasidagi masofa teng bo’lmaganda Nyuton
interpolyatsion formulasi.
Bo’lingan chekli ayirmalar. Biz oldin chekli ayirmalar tushunchasi bilan tanishgan edik va uning teng oraliqli interpolyatsion formulalarda ishlatilishini ko’rib o’tgan edik.
Tugunlar orasi teng bo’lmagan interpolyatsion formulalar va empirik formulalarda bo’lingan chekli ayirmalar ishlatiladi.
Bizga EMBED Equation.3 berilgan bo’lsin bu funktsiya jadval usulida berilgan bo’lsin argumentning EMBED Equation.3 qiymatlari mos keladi.
Birinchi tartibli bo’lingan chekli ayirma
EMBED Equation.3
va hokazo.
Shunga o’xshash ikkinchi tartibli bo’lingan chekli ayirma
EMBED Equation.3
Umuman tartibli bo’lingan chekli ayirmani EMBED Equation.3 tartibli bo’lingan chekli ayirma bilan ifodalash mumkin.
EMBED Equation.3 (1)
Bo’lingan chekli ayirmalarda elementlarning o’rnini almashtirgan bilan qiymati o’zgarmaydi (simmetrik funksiya).
EMBED Equation.3 (2)
Amaliy vazifalarni bajarishda bo’lingan chekli ayirmalar jadvalidan foydalangan ma’qul.
Bo’lingan chekli ayirmalar jadvali.
X |
Y
| BO’LINGAN chekli ayirmalar |
1-tartibli
|
2-tartibli
|
3-tartibli
|
4-tartibli
|
X0
|
y 0
|
|
|
|
|
|
|
[x0, x1]
|
|
|
|
X1
|
y 1
|
|
[x0 ,x1 , x2]
|
|
|
|
|
[x1, x2]
|
|
[x0 ,x1 , x2 , x3]
|
|
X2
|
y2
|
|
[x1 ,x2 , x3]
|
|
[x0 ,x1 , x2 , x3]
|
|
|
[x2, x3]
|
|
[x1 ,x2 , x3 , x4]
|
|
X3
|
y3
|
|
[x2 ,x3 , x4]
|
|
|
|
|
[x3, x4]
|
|
|
|
X4
|
y4
|
|
|
|
|
|
|
|
|
|
|
Bo’lingan chekli ayirmalar tushunchasi yordamida Lagranj interpolyatsion formulasini Nyutonning birinchi interpolyatsion formulasiga o’xshash interpolyatsion formula bilan yechish mumkin. Buning uchun bitta lemma isbot qilamiz.
n –tartibli ko’phadning n+1 tartibli bo’lingan chekli ayirmasi haqidagi lemma.
Lemma: n – tartibli EMBED Equation.3 ko’phadning EMBED Equation.3 tartibli bo’lingan chekli ayirmasi nolga teng.
Isbot qilish kerak EMBED Equation.3
Isbot:
EMBED Equation.3
EMBED Equation.3 ko’phad EMBED Equation.3 tartiblidir.
EMBED Equation.3
EMBED Equation.3 tartibli ko’phaddir.
Chunki EMBED Equation.3 ko’phadning ildizi. EMBED Equation.3 .
Demak Bezu teoremasiga asosan EMBED Equation.3 ga bo’linadi. Huddi shunday mulohaza qilsak
EMBED Equation.3
ko’phad nolinchi darajali ko’phaddir ya’ni
EMBED Equation.3
Bundan
EMBED Equation.3
Lemma isbot qilindi.
EMBED Equation.3 - n-darajali Lagranj interpolyatsion formulasi bo’lsin
EMBED Equation.3 (1)
Tubandagi belgilashlarni kiritamiz.
EMBED Equation.3 (2)
Lemmaga asosan
EMBED Equation.3 (3)
Ta’rifga asosan
EMBED Equation.3 (4)
Bundan
EMBED Equation.3 (5)
Bo’lingan chekli ayirmaning ta’rifiga asosan
EMBED Equation.3 (6)
(5) va (6) dan foydalanib
EMBED Equation.3
EMBED Equation.3 Lemmaga asosan.
EMBED Equation.3 (7)
(7) formulaga tugunlar orasidagi masofa teng bo’lganda Nyuton interpolyatsion formulasi deyiladi.
Do'stlaringiz bilan baham: |