Hands-On Machine Learning with Scikit-Learn and TensorFlow


| Chapter 2: End-to-End Machine Learning Project



Download 26,57 Mb.
Pdf ko'rish
bet38/225
Sana16.03.2022
Hajmi26,57 Mb.
#497859
1   ...   34   35   36   37   38   39   40   41   ...   225
Bog'liq
Hands on Machine Learning with Scikit Learn Keras and TensorFlow

54 | Chapter 2: End-to-End Machine Learning Project


11
The standard deviation is generally denoted σ (the Greek letter sigma), and it is the square root of the 
var‐
iance
, which is the average of the squared deviation from the mean. When a feature has a bell-shaped 
normal
distribution
(also called a 
Gaussian distribution
), which is very common, the “68-95-99.7” rule applies: about
68% of the values fall within 1σ of the mean, 95% within 2σ, and 99.7% within 3σ.
The 
count

mean

min
, and 
max
rows are self-explanatory. Note that the null values are
ignored (so, for example, 
count
of 
total_bedrooms
is 20,433, not 20,640). The 
std
row shows the 
standard deviation
, which measures how dispersed the values are.
11
The 25%, 50%, and 75% rows show the corresponding 
percentiles
: a percentile indi‐
cates the value below which a given percentage of observations in a group of observa‐
tions falls. For example, 25% of the districts have a 
housing_median_age
lower than
18, while 50% are lower than 29 and 75% are lower than 37. These are often called the
25
th
percentile (or 1
st
quartile
), the median, and the 75
th
percentile (or 3
rd
quartile).
Another quick way to get a feel of the type of data you are dealing with is to plot a 
histogram for each numerical attribute. A histogram shows the number of instances
(on the vertical axis) that have a given value range (on the horizontal axis). You can
either plot this one attribute at a time, or you can call the 
hist()
method on the
whole dataset, and it will plot a histogram for each numerical attribute (see
Figure 2-8
). For example, you can see that slightly over 800 districts have a
median_house_value
equal to about $100,000.
%
matplotlib
inline
# only in a Jupyter notebook

Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   34   35   36   37   38   39   40   41   ...   225




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish