Hands-On Machine Learning with Scikit-Learn and TensorFlow


x j is as small as possible, assuming  w i,j = 0 if x



Download 26,57 Mb.
Pdf ko'rish
bet186/225
Sana16.03.2022
Hajmi26,57 Mb.
#497859
1   ...   182   183   184   185   186   187   188   189   ...   225
Bog'liq
Hands on Machine Learning with Scikit Learn Keras and TensorFlow

x
j
is as small as possible, assuming 
w
i,j
= 0 if x
(
j
)
is not one of the 
k
closest neighbors of x
(
i
)
. Thus the first step of LLE is the
constrained optimization problem described in 
Equation 8-4
, where W is the weight
matrix containing all the weights 
w
i,j
. The second constraint simply normalizes the
weights for each training instance x
(
i
)
.
234 | Chapter 8: Dimensionality Reduction


Equation 8-4. LLE step 1: linearly modeling local relationships
= argmin
W

i
= 1
m
x
i


j
= 1
m
w
i
,
j
x
j
2
subject to
w
i
,
j
= 0
if x
j
is not one of the
k
c.n. of x
i

j
= 1
m
w
i
,
j
= 1 for
i
= 1, 2,

,
m
After this step, the weight matrix W (containing the weights 
w
i
,
j
) encodes the local
linear relationships between the training instances. Now the second step is to map the
training instances into a 
d
-dimensional space (where 
d

n
) while preserving these
local relationships as much as possible. If z
(
i
)
is the image of x
(
i
)
in this 
d
-dimensional
space, then we want the squared distance between z
(
i
)
and ∑
j
= 1
m
w
i
,
j
z
j
to be as small
as possible. This idea leads to the unconstrained optimization problem described in
Equation 8-5
. It looks very similar to the first step, but instead of keeping the instan‐
ces fixed and finding the optimal weights, we are doing the reverse: keeping the
weights fixed and finding the optimal position of the instances’ images in the low-
dimensional space. Note that Z is the matrix containing all z
(
i
)
.
Equation 8-5. LLE step 2: reducing dimensionality while preserving relationships

Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   182   183   184   185   186   187   188   189   ...   225




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish