Guruh 101 Talabaning F. I. Sh Ortiqova Shodiya



Download 408,12 Kb.
bet1/4
Sana21.02.2022
Hajmi408,12 Kb.
#461619
  1   2   3   4
Bog'liq
101-guruh Ortiqova Shodiya 6-Mustaqil ishi


O‘ZBEKISTON RESPUBLIKASI OLIY VA O‘RTA MAXSUS
TA’LIM VAZIRLIGI
NIZOMIY NOMIDAGI TOSHKENT DAVLAT PEDAGOGIKA UNIVERSITETI
TABIIY FANLAR FAKULTETI

KIMYO VA UNI O‘QITISH METODIKASI” KAFEDRASI





MUSTAQIL ISH
Ta’lim yo’nalishi: Kimyo
Guruh_101
Talabaning F.I.Sh_Ortiqova Shodiya
Fan nomi : Oliy matematika
Mavzu: Funksiya xosilasi. Differensialashqoidalari.Funksiyamonotonligi va ekstremumlari


Fan o'qituvchisi:Rajabov .U.T

Funksiya xosilasi. Differensialashqoidalari.Funksiyamonotonligi va ekstremumlari

Reja:


  1. Hosila va differensialni hisoblash qoidalari Yuqori tartibli hosila va differensiallar

  2. Differensiallanuvchi funksiya uchun o`rta qiymat haqida teoremalar. Teylor formulasi. Lopital qoidasi


Yuqori tartibli hosila va differensiallar

1. Differensiallanuvchi funksiyalar haqida teoremalar. Elemen-tar funksiyalar hosilalari jadvali
Limitlar haqida teoremalar kabi, differensiallanuvchi funksiyalar haqida ham teoremalar mavjud.
u(x) va v(x) funksiyalar x nuqtada differensiallanuvchi bo`lib, k biror-bir o`zgarmas son bo`lsa, u holda x nuqtada
a) u(x) + v(x); b) k u(x); c) u(x) · v(x); d)
funksiyalar ham differensiallanuvchi bo`ladi va quyidagilar o`rinli :
1) [u(x) + v(x)]  = u(x) + v(x); d[u(x) + v(x)] = du(x) + dv(x).
2) [k u(x)]  = k u(x); d[k u(x)] = k du(x).
3) [u(x) · v(x)] = u(x) · v(x) + u(x) · v(x);
d[u(x) · v(x)] = u(x) · dv(x) + v(x) · du(x).

4) ;




, ( v(x) ≠0).

Funksiya hosilasini hisoblashda differensiallash qoidalaridan tash-qari, elementar funksiyalar hosilalari jadvalidan ham foydalaniladi.





(x)

f(x)




(x)

f(x)

C (o`zgarmas)

0




sin x

cos x

xp

xp-1




cos x

-sin x








tg x



ax

alna




ctg x



(x)

f(x)




(x)

f(x)

ex

ex




arcsin x



log|x|






arccos x






arctg x



ln |x|






arcctg x


Misollar. Differensiallash qoidalari va hosilalar jadvalidan foydala-nib, quyidagi funksiyalar hosilalarini hisoblang:


1. . 2. .
1.
.
2.

2. Murakkab funksiya hosilasi va differensiali
y = (u) va u = g(x) funksiyalarning superpozitsiyasidan iborat y = [g(x)] murakkab funksiya berilgan bo`lsin.
Agar u = g(x) funksiya x0 nuqtada differensiallanuvchi, o`z navbati-da y = (u) funksiya u0 = g(x0) nuqtada differensiallanuvchi bo`lsa, u holda y = [g(x)] murakkab funksiya ham x0 nuqtada differensiallanuv-chi bo`ladi va yoki y(x0) = f (u0) · g(x0).
Murakkab funksiyaning erkli o`zgaruvchi bo`yicha hosilasi, shu funksiyani tashkil etgan (superpozitsiyalanuvchi) funksiya hosilalarining ko`paytmasiga teng.
Murakkab funksiya differensiali uchun dy = y(x0) · dx = f (u0) · du tengliklar o`rinli, bu yerda du = g(x0) · dx. Murakkab funksiya birinchi tartibli differensialini hisoblash uchun uning biror o`zgaruvchi bo`yicha hosilasini shu o`zgaruvchining differensialiga ko`paytirish yetarli. Bun-da differensialni hisoblash shakli o`zgarishsiz qolib, o`zgaruvchilarning tanlanilishiga yoki ularning erkli yoki erksizligiga bog`liq emas.Ushbu xossa birinchi tartibli differensial shaklining invariantlik xossasi deyiladi.
Misol.
1.  funksiyaning birinchi tartibli hosilasi va differensialini hisoblaymiz:


2. y = xsin x (x > 0) funksiya hosilasini hisoblash uchun, dastlab tenglikning ikkala tomonini logarifmlaymiz va so`ngra hosila olamiz:
(lny) = (sin x · lnx) <=> .
Natijada, .

Download 408,12 Kb.

Do'stlaringiz bilan baham:
  1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish