Guruh 101 kechki Talabaning F. I. Sh Normatova Durdona



Download 290,53 Kb.
bet3/3
Sana15.06.2022
Hajmi290,53 Kb.
#672301
1   2   3
=
โˆ’3๐‘‘๐‘ก ๐‘ก3 โˆ’1
= โˆ’
1 ๐‘ก โˆ’1
+
๐‘ก +2 ๐‘ก2 +๐‘ก +1
๐‘‘๐‘ก =
=
1 2
ln
๐‘ก2 +๐‘ก +1 (๐‘ก โˆ’1)2
+ 3 arctg
2๐‘ก โˆ’1 3
+๐ถ,
bu yerda ๐‘ก = ๐‘ฅ+1 ๐‘ฅโˆ’1 3
.
3. Binomial differensiallarni integrallash.
โ€ข Binomal deb
๐‘ฅ๐‘š(๐‘Ž +๐‘๐‘ฅ๐‘›)๐‘๐‘‘๐‘ฅ (3) kurinishdagi differensiallarga aytiladi; bu yerda a, b โ€“ ixtiyoriy sonlar, m, n, p โ€“ ratsional sonlar. Bu ifodalarni kaysi xollarda integrallashini kurib chikamiz. 1) r - butun son (musbat, nol yoki manfiy). Bu xol (1) integralda kurilgan.Agar m va n kasrlahyb eng kichik umumiy maxrajini ๐œ† deb belgilasak ifoda (3) ๐‘… ๐‘ฅ ๐œ† ๐‘‘๐‘ฅ boladi. bu yerda ๐‘ก = ๐‘ฅ ๐œ† almashtirish masalani xal etadi.
3. Binomial differensiallarni integrallash.
Karalayotgan ifodada ๐‘ง = ๐‘ฅ๐‘› almashtirish bajaramiz. U xolda ๐‘ฅ๐‘š(๐‘Ž +๐‘๐‘ฅ๐‘›)๐‘๐‘‘๐‘ฅ = 1 ๐‘› (๐‘Ž +๐‘๐‘ง)๐‘๐‘ง ๐‘š+1 ๐‘› โˆ’1๐‘‘๐‘ง va, bu yerda ๐‘š+1 ๐‘› โˆ’1 = ๐‘ž deb olib ๐‘ฅ๐‘š(๐‘Ž +๐‘๐‘ฅ๐‘›)๐‘๐‘‘๐‘ฅ = 1 ๐‘› (๐‘Ž +๐‘๐‘ง)๐‘๐‘ง๐‘ž๐‘‘๐‘ง. (4)
3. Binomial differensiallarni integrallash.
2) Agar q butun son bulsa, avval kurilgan xol integral (2) vujudga keladi. bu yerda ฯ… deb r ning maxrajini belgilasak ๐‘ก = ๐‘Ž +๐‘๐‘ง ๐œ = ๐‘Ž +๐‘๐‘ฅ๐‘› ๐œ
โ€ข almashtirish masalani xal etadi. โ€ข 3) (4) dagi ikkinchi ifodani kuyidagicha yozamiz: 1 ๐‘› ๐‘Ž+๐‘๐‘ง ๐‘ง ๐‘ ๐‘ง๐‘+๐‘ž . โ€ข Agar p + q butun son bulsa, avval kurilgan xol integral (2) vujudga keladi. bu yerda ฯ… deb r ning maxrajini belgilasak
๐‘ก =
๐‘Ž +๐‘๐‘ง ๐‘ง
๐œ
= ๐‘Ž๐‘ฅโˆ’๐‘› +๐‘ ๐œ
โ€ข almashtirish masalani xal etadi.
4. Chebishev teoremasi. (4) dagi ikkala integral fakat karalgan uchta xolda integrallanadi, kolgan xolatlar bundan mustusno. ะœะธัะพะป 3. ๐‘‘๐‘ฅ 1+๐‘ฅ4 4 integralะฝะธ hisoblang.
๐‘‘๐‘ฅ 1+๐‘ฅ4 4 = ๐‘ฅ0(1+๐‘ฅ4)โˆ’ 1 4 ๐‘‘๐‘ฅ. bu yerda m = 0, n = 4, p = โˆ’1 4 ; uchinchi xolat ๐‘š+1 ๐‘› +๐‘ = 0, ฯ… = 4. koโ€™rsatilgan almashtirishni bajaramiz: ๐‘ก = ๐‘ฅโˆ’4 +1 4 = 1+๐‘ฅ4 4 ๐‘ฅ , ๐‘ฅ = (๐‘ก4 โˆ’1)โˆ’1 4, ๐‘‘๐‘ฅ = โˆ’๐‘ก3 ๐‘ก4 โˆ’1 โˆ’5 4๐‘‘๐‘ก, bundan 1+๐‘ฅ44 = ๐‘ก๐‘ฅ = ๐‘ก ๐‘ก4 โˆ’1 โˆ’1 4,
๐‘‘๐‘ฅ 1+๐‘ฅ4 4 = โˆ’ ๐‘ก2๐‘‘๐‘ก ๐‘ก4 โˆ’1 = 1 4 ln ๐‘ก +1 ๐‘ก โˆ’1 โˆ’ 1 2 arctg ๐‘ก +๐ถ.
Download 290,53 Kb.

Do'stlaringiz bilan baham:
1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
ัŽั€ั‚ะดะฐ ั‚ะฐะฝั‚ะฐะฝะฐ
ะ‘ะพา“ะดะฐ ะฑะธั‚ะณะฐะฝ
ะ‘ัƒะณัƒะฝ ัŽั€ั‚ะดะฐ
ะญัˆะธั‚ะณะฐะฝะปะฐั€ ะถะธะปะผะฐะฝะณะปะฐั€
ะญัˆะธั‚ะผะฐะดะธะผ ะดะตะผะฐะฝะณะปะฐั€
ะฑะธั‚ะณะฐะฝ ะฑะพะดะพะผะปะฐั€
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan boโ€™yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
boโ€™yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish