Государственное унитарное предприятие «фан ва тараккиёт»


Апробация результатов исследования



Download 1,25 Mb.
bet11/42
Sana23.02.2022
Hajmi1,25 Mb.
#136365
1   ...   7   8   9   10   11   12   13   14   ...   42
Bog'liq
диссер Хурсанов

Апробация результатов исследования. Результаты данного исследования были опробованы на 7, в том числе, на 3 международных и 4 республиканских научно-практических конференциях.
Опубликованность результатов исследования. По теме диссертации опубликовано 20 научных трудов, в том числе 13 научных статей, из них 10 в республиканских и 3 статьи в зарубежных журналах рекомендованных Высшей аттестационной комиссией Республики Узбекистан. По теме основных научных результатов докторской диссертации, получен 3 патента республики Узбекистан.
Структура и объем диссертации.
Структура диссертации состоит из введения, пяти глав, заключения, списка использованной литературы, приложений. Объем диссертации составляет 120 страниц.


ГЛАВА I. СОВРЕМЕННОЕ СОСТОЯНИЕ И АНАЛИЗ ФЛОТОРЕАГЕНТОВ – ВСПЕНИВАТЕЛЕЙ, ПРИМЕНЯЕМЫХ В ПРОЦЕССЕ ФЛОТАЦИИ РУД МЕТАЛЛУРГИЧЕСКОЙ ОТРАСЛИ ПРОМЫШЛЕННОСТИ
1.1. Современное состояние, классификация и применение существующих флотореагентов – вспенивателей, используемых для флотационного обогащения руд цветных и благородных металлов

В настоящее время одним из важнейших проблем горно-металлургического комплекса стран мира, в том числе в нашей стране, как известно, является существенное обеднение запасов руд цветных металлов по содержанию основных минералов, что связано с вовлечением в переработку бедных, труднообогатимых тонковкрапленных руд. Существенная роль в решении этой проблемы отводится стадии обогащения минерального сырья, разработке новых приемов и схем обогащения, новых высокоэффективных флотореагентов с целью комплексного их извлечения.


Республика Узбекистан имеет высокоразвитую металлургическую промышленность, которая основывается на богатейших природных ресурсах. Достаточно сказать, что республика находится на четвертом месте в мире по разведанным запасам золота и на седьмом по его добыче, на седьмом месте по запасам урана и на одиннадцатом-двенадцатом месте – по запасам меди. Также республика обладает значителными запасами других металлов, в том числе благородных и редкоземельных, таких, как серебро, молибден, висмут, вольфрам, литий и других. На территории Узбекистана выявлен широкий комплекс полезных ископаемых, включающий около 140 видов минерального сырья, из которых 60 уже используются во многих отраслях экономики 2.

Флотация в настоящее время и в перспективе остаётся наиболее широко распространённым процессом обогащения подавляющего большинства руд. Мировой объем руд, подвергаемых обогащению методом флотации, оценивается один миллиард тонн в год [3; с.44-46].


Основную роль в процессе флотации играют флотореагенты. От их грамотного и экономически целесообразного применения зависят успех флотации и прогресс в её развитии [4; с.74-79, 5; с. 82-85, 6; с. 59-66, 7; с. 53-54, 8; с. 8-13, 9; с. 431, 10; с. 291].
Флотореагенты — химические соединения, способствующие избирательному прилипанию пузырьков воздуха к минеральным частицам и осуществлению флотации определенных компонентов [11; с. 270-273, 12; с. 16-23, 13; с. 391, 14; с. 283].
Характерной особенностью применяемых реагентов в процессе флотации является избирательность их действия по отношению к различным фазовым границам и, в частности, к разным минеральным поверхностям в зависимости от условий, создаваемых в водной среде пульпы. Такая избирательность [15; с. 392, 16; с. 63-66, 17; с. 288] всегда связана с ярко выраженной специфичностью адсорбционного, адсорбционно - химического, электрохимического действия или химической реакции в объеме жидкой фазы пульпы. Эти процессы вызывают изменение условий смачивания поверхности зерен отдельных минералов и, следовательно, прилипания их к пузырькам.
Широкое распространение в последние годы получили исследования, направленные на разработку нового состава флотореагентов, реагентов – вспенивателей в процессе флотации. Указанные реагенты, как правило, самостоятельно обладают высокой эффективностью при флотации руд цветных металлов. Экономический эффект при этом достигается за счет повышения технологических показателей, поскольку стоимость вспенивателей обычно сравнима со стоимостью дополнительного реагента.
Особое внимание заслуживает совместное применение ионогенных и аполярных вспенивателей, которые обеспечивают высокую эффективность технологического процесса флотации [18; с. 228-235].
Анализ исследовательских работ, выполненных В.А. Глембоцким с соавторами, Л.Я. Шубовым, В.А. Есепкиным, С.И. Черных с соавторами и других показывает, что большее предпочтение по эффективности действия отдается аполярным реагентам, содержащим ароматические углеводороды и их гомологи. В работах отмечается целесообразность более глубоко изучения таких соединений в качестве флотореагентов [19; с. 163-167].
Флотация остается наиболее эффективным технологическим процессом разделения минералов тонковкрапленных руд цветных металлов. Вовлечение в переработку больших объемов труднообогатимого сырья требует применения новых технологических приемов и реагентных режимов [20; с. 3-5]. Неравномерная вкрапленность; тонкое взаимопрорастание рудных минералов между собой и с породными минералами; неблагоприятное соотношение разделяемых минералов, которое проявляется в значительной массовой доле пирита в колчеданных рудах Уральского региона (достигает 80-90 % от суммы сульфидных минералов); неравномерное соотношение массовой доли медных минералов и сфалерита; часто значительное превышение массовой доли цинка над сульфидами меди или свинца более 4,5 для медно-цинковых и свинцово-цинковых руд); высокое значение карбонатного модуля (отношение массовой доли кальцита к шеелиту более 50) для тонковкрапленных шеелитсодержащих руд. Все эти факторы значительно затрудняют получение высоких технологических показателей обогащения. Близкие флотационные свойства сульфидных минералов цветных металлов и пирита; кальцийсодержащих минералов (шеелита и кальцита) являются одной из основных причин, осложняющих селективную флотацию разделяемых минералов [21; с. 19-23].
Основная проблема селективной флотации массивных медно-цинковых руд заключается в многообразии модификаций пирита от крупнозернистой структуры до тонкодисперсного и коломорфного. Многие модификации пирита при флотации бутиловым ксантогенатом активно флотируются, как и сульфиды меди и сфалерит, что создает значительные трудности в разделении этих минералов и в получении селективных концентратов цветных металлов [22; с. 280].
Создание общих принципов выбора композиций вспенивателей, состоящих из ионогенных и малополярных неионогенных соединений, для селективной флотации разделяемых минералов, разработка селективных реагентных режимов на основании использования сочетания вспенивателей разной ионогенности остается актуальной проблемой.
Современное флотационное обогащение основано на применении флотационных реагентов (флотореагентов). Одним из важнейших методов стала разработка метода пенной флотации. Работа над этой технологией заняла много времени, что-то делалось не так, но, в конце концов, она приобрела нынешний вид и стала неотъемлемой составляющей современной добычи цветных и благородных металлов.
Метод пенной флотации играет важную роль в обогащении основных и драгоценных металлов; его разновидности можно встретить в пищевой промышленности, в отрасли переработки бумаги. Хотя химия извлечения пенной флотацией достаточно сложна, ее основы понять не так трудно, поэтому стоит подробнее взглянуть на базовые принципы данной технологии.
Процесс пенной флотации основан на характерных свойствах минералов: по своей природе некоторые из них легко поддаются смачиванию водой (гидрофильные), другие же, обладающие естественной маслянистой поверхностью, ее отталкивают (гидрофобные).
Многие минералы с металлическим блеском попадают в категорию гидрофобных и от природы отлично взаимодействуют с маслянистыми и жирными веществами. К ним относится ряд сульфидных минералов, способных содержать драгоценные металлы, например, галенит (сульфид свинца), халькопирит (медь) и сфалерит (сульфид цинка). Другими словами, их поверхность при наличии воды и масла проявляет заметную подверженность к воздействию последнего. С другой стороны, с водой легко взаимодействуют многие пустые или отработанные материалы со стеклянным блеском, например, кварц или кальцит.
Об этих различиях добытчики отлично знали уже в начале 20 века. Они учитывали и использовали их при разработке метода обогащения, который должен был эффективно отделять минералы драгоценных металлов от остальных в рамках одного месторождения. В конце концов, он получил название пенной флотации.
Основная идея, лежащая в основе метода пенной флотации, хорошо известна и знакома любому старателю, который когда-либо имел возможность наблюдать, как мелкие частички золота собираются на поверхности воды. Именно по этой причине лоток следует тщательно очищать от жира, наличие которого способствует флотации. Современные лотки редко используются для приготовления пищи, но раньше они применялись добытчиками для самых разных целей. По этой причине лоток должен был содержаться в чистоте, иначе старатель мог потерять мелкое золото при промывке песка.
Для эффективной сепарации минералов они должны быть в достаточной степени измельчены. Извлечь крошечные частицы сульфидов на жировом столе практически невозможно. В процессе флотации гидрофобные частицы прикрепляются к пузырькам воздуха (и наоборот) и поднимаются с ними на поверхность пены. Поверхность минералов, лучше взаимодействующих с водой (например, «стеклянные» кальцит, кварц и другие силикаты), полностью смачивается, препятствуя прилипанию к пузырькам, которые в этом случае просто двигаются мимо, а сами пустые минералы оседают на дно [23; с. 19-21].
Пузырьки более эффективно прилипают к гидрофобным сульфидным минералам при наличии на их поверхности (металлической) некоторых видов масел, которые еще больше увеличивают гидрофобность минеральных частиц. Поэтому, когда смесь гидрофильных и гидрофобных минералов определенной крупности перемешивается в пене при достаточном поступлении воздуха, его пузырьки прикрепляются к частицам, обладающим металлической, отталкивающей воду поверхностью. Они заставляют их (частицы), несмотря на большую плотность, всплывать, а пустые частицы, легко смачиваемые водой, оседают на дно. Затем ценные компоненты собираются с поверхности пены, сгущаются и помещаются на хранение в виде концентрата. Хвосты в свою очередь удаляются со дна флотационной камеры [24; с. 353].
Особенности смачиваемости различных минералов разные, поэтому и перерабатываться они должны по-разному. В целом более тяжелые силикаты, например, родонит или гранат, смачиваются не так хорошо, как легкие – кварц, ортоклаз. Для контроля над поведением минералов при флотации были разработаны специальные химические вещества. Так, определенные кислоты снижают степень прилипания масла к пустым частицам, не препятствуя, однако, воздействию масла и воздуха на металлические сульфиды. Таким образом, регулируя используемые реагенты, уровень pH в пульпе, а также некоторые другие факторы, добытчик может сам определять, какие минералы будут собираться пеной. Также существует возможность отделить один сульфидный минерал от другого, получив при этом два разных концентрата, например, свинца и цинка (при переработке материала, достаточно богатого обоими металлами).
Химические вещества, используемые для регулирования флотации, подразделяются на несколько видов: пенообразующие агенты, коллекторы (собиратели), активаторы и депрессанты [25; с. 17-25, 26; с. 653].
Пенообразующие агенты (или просто вспениватели) используются для образования устойчивого слоя пены во флотационной камере. При этом слой должен держаться достаточно долго для эффективного извлечения драгоценных минералов. Самые распространенные вспениватели – это сложные спирты, в частности метил-изобутил-карбинол (methyl isobutyl carbinol, MIBC) [27; с. 352, 28; с. 134, 29; с. 127].
Раньше в качестве пенообразующих агентов использовали природные реагенты, например, пихтовое масло или крезоловую кислоту. Они богаты поверхностно-активными элементами, которые стабилизируют пузырьки, и в целом очень эффективны в качестве вспенивателей. Однако такие вещества не очень чисты химически: они содержат широкий спектр компонентов, отрицательно влияющих на флотационные свойства. Некоторые из таких соединений могут выступать в роли коллекторов, прикрепляясь к поверхности минеральных частиц. Кроме того, они выполняют функции слабых собирателей, поэтому использовать их для сепарации различных сульфидных минералов на отдельные продукты нежелательно, поскольку они не способны обеспечить надлежащий уровень контроля над процессом.
В процессе флотационного обогащения руды измельчаются до крупности 0,2-0,6 мм, редко меньше. Чем больше крупность измельченной руды, тем выше вероятность того, что отдельные частицы будут содержать и рудные, и пустые минералы. К тому же частицы меньшего размера лучше удерживаются в пене. С другой стороны, чрезмерное измельчение (или присутствие материала слишком малой крупности) может отрицательно сказаться на извлечении, и стать простой тратой ресурсов [30; с. 68-70].
Основные факторы, влияющие на эффективность флотации, чрезвычайно взаимозависимы. Любое изменение одного из них, например, скорости подачи материала, обязательно требует отстройки остальных – подачи реагентов, крупности частиц, потока воздуха, плотности исходной пульпы и т.д. Количество сульфидов в руде может существенным образом повлиять на выбор химических веществ, поэтому если материал достаточно неоднороден, иногда практикуется его сортировка (различными методами) и смешивание. Окисление руды до переработки может также негативно повлиять на извлечение, поскольку для флотации лучше всего подходят сульфиды со «свежей» поверхностью.
Результаты флотационного обогащения в значительной степени определяются реагентным режимом флотации — ассортиментом и способом применения реагентов; один и тот же результат флотации может быть получен при различных реагентных режимах. Реагентный режим флотации преимущественно определяется типом и характеристикой полезного ископаемого, степенью его измельчения и кондициями, предъявляемыми к продуктам обогащения.
Простейший реагентный режим определяется дозировкой одного пенообразователя или реагента со смешанными функциями собирателя-пенообразователя. В современной практике флотации такие режимы редки. Обычно при флотации одновременно применяют несколько реагентов, действие которых взаимосвязано и зависит от концентрации каждого из них. Превышение сверх необходимого расхода реагента одного класса требует повышения расхода реагентов других классов и может привести к ухудшению технологических показателей. Минимально возможные расходы реагентов обеспечивают наименьшие затраты на переработку минерального сырья и лучшие результаты флотации. Необходимый расход реагентов определяют с помощью лабораторных флотационных опытов, уточняют в полупромышленных и промышленных условиях.
Флотоактивность реагентов может быть повышена с помощью физических, химических и других методов — эмульгирование, электрохимическое окисление, ультразвуковая, тепловая и бактериальная обработки, смешивание разных реагентов, подача реагента в парообразном состоянии или в виде аэрозоля и другие. Использование физических, химических и других методов воздействия на флотореагенты и их водные растворы способствует повышению технико-экономических показателей флотации (снижение расхода реагентов, увеличение извлечения ценных компонентов, улучшение качества концентратов). Наряду с применением флотореагентов трех классов (собиратели, пенообразователи, регуляторы) и различного сочетания реагентов внутри каждого класса совершенствование флотации минерального сырья во многом определяют технологические приемы, включающие применение сочетаний флотореагентов различных классов, методы обработки пульпы реагентами, методы обработки реагентов перед флотацией, комбинации флотационных методов на основе применения реагентов и не флотационных операций.
Пенообразователи — это поверхностно-активные органические вещества, адсорбирующиеся преимущественно на поверхности раздела жидкость — газ [31; с. 636, 32; с. 44-46, 33; с. 400, 34; с. 76-79, 89-92]. Назначение пенообразователей — это способствовать образованию в объеме пульпы воздушных пузырьков с определенными свойствами, а на поверхности пульпы — достаточно устойчивого пенного слоя необходимого строения.
Молекулы пенообразователей являются полярно-аполярными (дифильными). Полярная часть может быть представлена гидроксилом, карбонилом, сульфогруппой, аминогруппой и другим.
Адсорбция пенообразователей на разделе жидкость — газ подчиняется уравнению Гиббса:

Поверхностное натяжение чистых пенообразователей и их растворов значительно меньше, чем поверхностное натяжение воды. С повышением концентрации пенообразователя поверхностное натяжение раствора понижается, поверхностно-активное вещество переходит в поверхностный слой, обусловливая уменьшение свободной энергии (движущая сила адсорбции). В предельном случае при добавлении к воде поверхностно-активных веществ молекулы воды полностью удаляются с поверхности раздела газообразной и жидкой фаз и замещаются молекулами менее полярного вещества, например, терпинеола. При этом сила межмолекулярного взаимодействия поверхностного слоя жидкости и воздуха увеличивается, поверхностное натяжение уменьшается.
При флотационных концентрациях пенообразователей понижение поверхностного натяжения составляет 30—30 мкН/см и адсорбционный слой на поверхности пузырьков в объеме пульпы является ненасыщенным. Концентрация пенообразователя в пенном слое значительно больше, чем в объеме пульпы (выше уровня пульпы пузырьки разрушаются и пена непрерывно обогащается новыми порциями реагента).
Адсорбируясь на границе раздела вода — воздух, поверхностно-активные вещества ориентируются полярной группой в водную фазу. Взаимодействуя с полярными группами молекул пенообразователя, диполи воды гидратируют их, создавая каркас известной жесткости и способствуя упрочению поверхностного адсорбционного слоя пузырька воздуха. Чем больше гидратированы молекулы пенообразователя, тем медленнее стекает вода с поверхности пузырька в пенном слое, тем устойчивее пена. Слишком хрупкие и устойчивые пены не являются оптимальными для флотации. В отсутствие пенообразователя пузырьки воздуха разрушаются практически сразу после достижения ими поверхности. Пена должна обладать свойствами, обеспечивающими вторичную концентрацию флотируемого минерала [35; с. 124].
Структура флотационной пены зависит, при прочих равных условиях, от характера флотореагентов и крупности минеральных зерен.
Различают три типа пен:
- пленочно-структурные; агрегатные и пленочные. Тип пены можно определить по виду ее распада и содержанию воды в продуктах распада.
Пленочно - структурная пена при флотации частиц обычной крупности встречается наиболее часто. Она характеризуется значительной обводненностью, имеет относительно большую высоту и повышенное содержание увлеченных потоком частиц пустой породы.
Агрегатными называют плотные минерализованные пены, содержащие относительно небольшую долю воды. Образованию агрегатных пен способствуют относительно крупные флотирующиеся частицы, а также добавки аполярных масел. Они могут получаться также при распаде обычных пленочно-структурных пен. Агрегатным пенам часто соответствует максимальная скорость флотации.
Пленочные пены аналогичны агрегатным, но имеют небольшую толщину; получаются при флотации крупных гидрофобных частиц небольшой плотности, например угля [36; с. 216, 37; с. 304, 38; с. 57-59].
Аполярная группа пенообразователя, замещающая молекулы воды на поверхности раздела фаз и обусловливающая уменьшение поверхностного натяжения, должна быть достаточной длины, чтобы выталкиваться из воды. У пенообразователей полярная группа находится в определенной связи с длиной углеводородного радикала. Например, спирты с числом атомов углерода в молекуле до 4 не являются пенообразователями, как и спирты, содержащие более 8 атомов углерода (в первом случае превалирует взаимодействие группы -ОН с водой над взаимодействием аполярного радикала с воздухом, во втором — наоборот).
Пенообразователи оказывают следующее действие:
- способствуют диспергированию воздуха во флотационной машине;
- препятствуют коалесценции воздушных пузырьков;
- снижают скорость подъема пузырьков воздуха в пульпе (приблизительно в 2 раза), способствуя их лучшей минерализации;
- увеличивают силу прилипания пузырьков к флотирующимся минеральным частицам;
- способствуют образованию трехфазной флотационной пены определенных свойств и характера.
Пенообразующая способность реагентов зависит от их природы и концентрации. В ряду нормальных спиртов наибольшим пенообразующим действием обладает октиловый спирт, затем гептиловый и гексиловый; в ряду низших фенолов — крезол, затем ксиленол и фенол. Наиболее сильные пенообразователи из применяемых в практике — ТЭБ и ОПСБ. Чем сильнее пенообразователь, тем меньший его расход требуется для флотации. Расход пенообразователя должен поддерживаться на минимально необходимом уровне во избежание снижения качества концентратов и увеличения объема флотируемой пульпы из-за повышенного выхода промпродукта [39; с. 25-31, 40; с. 1-15, 41; с. 264, 42; с. 69-75].
Каждый пенообразователь индивидуально влияет на характер распределения воздушных пузырьков в пульпе по крупности. Наиболее флотационно активные пузырьки диаметром 0,6— 1,2 мм. Крупные пузырьки обладают достаточной подъемной силой для извлечения крупных минеральных частиц и сростков, но вследствие больших скоростей подъема их время контакта с частицами невелико и они малоэффективны. Тонкие и сверхтонкие пузырьки находятся в пульпе значительное время, способствуют прикреплению к частицам пузырьков более крупных размеров, но сами по себе плохо флотируют минеральные частицы даже средней крупности [43; с. 271].
С уменьшением размера воздушных пузырьков возрастает стабильность пены. Флотирующиеся минеральные частицы также стабилизируют пену. Наоборот, тонкие гидрофобные осадки, образующиеся в пульпе при взаимодействии собирателя с ионами тяжелых металлов, оказывают пеногасящее действие. Растворение гидрофобных осадков или их превращение в гидрофильные под действием регуляторов приводит к усилению пенообразования (например, пенообразование увеличивают добавки хромпика в случае образования ксантогенита свинца, добавки сернистого натрия в случае образования ксантогенатов тяжелых цветных металлов и других; добавка сернистого натрия при расходе 5—10 г/т в основную флотацию чисто сульфидной руды позволяет иногда сократить на 25—30 % расход пенообразователя).
Для флотации минерального сырья предложено более двухсот пенообразователей. По классам химических соединений реагенты-пенообразователи делят на спирты, фенолы, кислоты, эфиры, гетероциклические, кремнийорганические и серосодержащие соединения; в группу «Разные» включены используемые в качестве пенообразователей единичные представители других классов органических соединений и реагенты сложного и неустановленного состава (побочные продукты и отходы химических производств, продукты взаимодействия различных органических соединений и т. п.).
Эффективность флотационного применения пенообразователей зависит от рН пульпы. Условно пенообразователи можно разделить на три группы:
- кислые, обладающие максимальным пенообразующим действием в кислой среде (фенолы);
- основные, обладающие максимальным пенообразующим действием в щелочной среде (некоторые гетероциклы);
- нейтральные, пенообразующее действие которых практически не зависит от рН (спирты, эфиры). Практически по масштабам потребления наиболее важны нейтральные пенообразователи.
Кроме того, можно выделить группу реагентов, выполняющих при флотации роль модификаторов пены (используют для изменения устойчивости и структуры пены). В качестве модификаторов пены рекомендуются древесный креозот, синтекс Л, масло Баррет, эмульсол Х-1, эксфоум 636 гидропероксиды [44; с. 84].
Выбор пенообразователя зависит от многих факторов, в первую очередь определяется характером минерального сырья и степенью его измельчения.
В общем случае при флотации полиметаллических руд для лучшего разделения необходимо применять слабые пенообразователи при максимально возможном расходе, а при флотации монометаллических руд — сильные пенообразователи, что должно способствовать повышению скорости флотации. Сильные пенообразователи рекомендуется также применять в случае более грубого рудного измельчения, особенно при использовании углеводородных масел, оказывающих пеногасящее действие.
Хрупкую, сравнительно малоустойчивую пену обеспечивают синтетические спиртовые пенообразователи, в частности, высшие алифатические спирты. Сравнительно устойчивую, но достаточно подвижную пену образует крезол. Наиболее устойчивую пену, в которой удерживается большая часть пустой породы, образуют древесно-смоляные масла. В случае повышенной обводненности пены хорошие результаты может дать увеличение времени ее отстаивания за счет регулировки работы пеногона (уменьшение частоты вращения и числа лопастей и т. п.).
Более точное ведение технологического процесса и повышение его показателей может обеспечить применение комбинации из двух пенообразователей либо сочетание двух различных пенообразователей в одном цикле, либо использование разных пенообразователей в разных циклах флотации [45; с. 198, 46; с. 262, 47; с. 233].
Дозируют пенообразователи обычно непосредственно во флотацию или в операцию перемешивания перед флотацией. В начальные операции рекомендуется подавать не менее 60—70 % общего расхода реагента.



Download 1,25 Mb.

Do'stlaringiz bilan baham:
1   ...   7   8   9   10   11   12   13   14   ...   42




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish