Giperbolik tenglamalarning xarakteristik xossalari



Download 353 Kb.
bet1/5
Sana11.02.2022
Hajmi353 Kb.
#443670
  1   2   3   4   5

Giperbolik tenglamalarning xarakteristik xossalari.
Reja:
1.Giperbolaning sodda yoki kanonik tenglamasi.
2. Giperbolaning xossalalari.
3. Giperbolaning asimptotalari.
4. Giperbola urinmasi.
5. Giperbolaning direktrisalari

Tayanch so`z va iboralar
Giperbola, fokus nuqtalar,fokal radiuslar, ekstsentrisitet, mavhum uchlar, o`ng yarim tarmoq, chap yarim tarmoq, haqiqiy o`q,mavhum o`q, asimptota chiziqlari, giperbola urinmasi, direktrisa chiziqlari.
Ta’rif. Tekislikda har bir nuqtasidan fokuslar deb ataluvchi Fl va F2 nuqtalargacha bo`lgan masofalar ayirmasining absolyut qiymati berilgan kesma uzunligiga teng bo`lgan nuqtalarning geometrik o`rniga giperbola deb ataladi. Berilgan kesma uzunligi fokuslar orasidagi masofadan kichik.
Ta’rifda aytilgan kesma uzunligini 2a fokuslari orasidagi masofani fokal masofa deb 2c bilan belgilaymiz, ta’rifga ko`ra
2a<2c Þ aa>0, c>0, Fl va Fz nuqtalar ustma-ust tushmaydi deb faraz qilamiz.
Giperbolaning N nuqtasidan fokuslarigacha bo`lgan masofalarni gg=F1N, g2=F2N larni N nuqtaning fokal radiusi deyiladi.
Giperbolaning ta’rifiga ko`ra giperbola tenglamasi
|F1N-F2N|=2a
yoki
| gg-g2|=2a (2)
Giperbola to`g’ri burchakli dekart koordinatalar sistemasidagi tenglamasini chiqarish uchun, koordinatalar sistemasini ellips bilan ish ko`rgandek qilib tanlaymiz.
F1F2=2c bo`lgani uchun olingan koordinatalar sistemasida F1(c,0), F2(-c,0), N(x,y) kordinatalarga ega bo`ladi (2-chizma).

U holada
r1=F1N= , r2=F2N= (3)
Giperbola ta’rifiga ko`ra ya’ni (16.2) formaulaga asosan
| - |=2a ni hosil qilamiz.
bu tenglamani quyidagicha yozib olamiz
= ±2a
bu tenglamani kvadratga oshirib quyidagiga ega bo`lamiz
±a =a2-cx
yana kvadratga oshirib ba’zi bir almashtirishlarni bajarib, quyidagilarni yozamiz
(c2-a2)x2-a2y2=a2(c2-a2) (4)
b2=c2-a2>0 (5)
belgilab, bu belgilanishlarni e’tiborga olsak
(6)
ega bo`lamiz.
Shunday qilib, giperbola ixtiyoriy nuqtasining koordinatalari (6) tenglamani qanoatalntiradi.
Endi teskari jumlani isbotlaylik. Ya’ni koordinatalari (6) tenglamani qanoatlantiruvchi nuqta giperbolada yotishini isbotlaylik.
(3) formuladagi y2 ning qiymatini (6) formuladan topib qo`yamiz va (5) ni e’tiborga olsak ushbu tengliklarga ega bo`lamiz
r1=/ -a/ r2=/ +a/
(6) dan / /³a. Bundan tashqari x³a , >1 bo’lsa, u holda r1= -a>0, r 2= +a>0, bo’lib r1= -a, r 2= +a, ≤0 da
r 1=a- r 2=-( +a) bo’ladi.
Demak, | g1-g2|=2a ya’ni M nuqta giperbolada yotadi. Shunday qilib, (6) tenglama giperbolaning sodda tenglamasi yoki giperbolaning kanonik tenglamasi deyiladi.

Download 353 Kb.

Do'stlaringiz bilan baham:
  1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish