Гетероструктурная технология Гетероструктурная технология предусматривает формирование солнечных элементов на основе контакта двух типов полупроводников: легированных слоев аморфного кремния с положительными носителями заряда (p) и кристаллического кремния с отрицательными носителями зарядом (n) – так называемый p-n переход – базовый элемент современной электроники. При попадании солнечного света на p-n переход, подключенный к потребителю, через электрическую цепь протекает ток – солнечный элемент вырабатывает электроэнергию.
Ключевыми преимуществами технологии гетероперехода являются: высокий КПД и стабильность параметров, что позволяет обеспечивать высокое качество конечной продукции. Это достигается за счёт ряда технологических особенностей при производстве, а именно: напыление легированных слоёв аморфного кремния позволяет повысить эффективность работы при экстремально высоких и низких температурах, а также в условиях низкой освещенности.
Пассивация задней поверхности уменьшает рекомбинацию (потери при переходе), что в свою очередь обеспечивает увеличение напряжения холостого хода и снижение температурного коэфициента.
Использование антиотражающих покрытий позволяет снизить отражение от поверхности с 30 до 10%.
Используется специальное стекло повышенной проницаемости.
Металлические контакты на поверхности расположены максимально близко друг к другу для минимизации поперечных резистивных потерь и в то же время очень тонкие, чтобы уменьшить затеняемую площадь поверхности.
Таким образом достигается:
до 10%* повышенной выработки на 1 кв. м площади за счёт низкого температурного коэффициента
до 13%* более эффективное использование площади и экономия на комплектующих
до 21%* прироста совокупной выработки на протяжении всей жизни модуля за счёт низкой деградации
*По сравнению с монокремниевыми модулями аналогичной мощности
ЭТАПЫ ПРОИЗВОДСТВА ГЕТЕРОСТРУКТУРНЫХ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ
1. УЧАСТОК ВХОДНОГО КОНТРОЛЯ И СОРТИРОВКИ ИСХОДНЫХ ПЛАСТИН КРЕМНИЯ (WIS)
Исходные пластины кристаллического кремния поступают на участок входного контроля.
Здесь пластины сортируются по типам дефектов, проходят разбраковку. Годные пластины кремния автоматически загружаются в кассеты и подаются на участок химобработки.
2. УЧАСТОК ХИМИЧЕСКОЙ ОБРАБОТКИ И ТЕКСТУРИРОВАНИЯ ПЛАСТИН КРЕМНИЯ
Первой операцией на данном участке является химическая обработка – удаление нарушенного слоя при резке пластин. Следующая задача – создать текстурированную поверхность пластины с целью максимального поглощения падающего света. Формирование пирамидальной светопоглощающей текстуры на поверхности пластины монокристаллического кремния происходит путем селективного анизотропного (медленного) травления. Процесс происходит в специальных ваннах с раствором щелочи при температуре 850 С.
3. ЛИНИЯ ФОРМИРОВАНИЯ ГЕТЕРОПЕРЕХОДНЫХ СТРУКТУР
Далее на подготовленные пластины монокристаллического кремния (на лицевую и тыльную стороны) в установках KAI по технологии плазмохимического осаждения синтезируются (наносятся) тонкие наноразмерные слои (пленки) аморфного гидрогенизированного кремния.
Создание гетеропереходов на обеих сторонах пластины монокристаллического кремния происходит в несколько этапов: линия автоматизации подает кассеты с подготовленными пластинами в установки KAI первого напыления, где наносится аморфный кремний на лицевую часть пластины, после выполнения операции, автоматически, через зону ISO 7 пластины возвращаются на участок автоматизации, переворачиваются и направляются в KAI второго напыления для нанесения пленок на тыльную сторону.
4. УЧАСТОК НАНЕСЕНИЯ КОНТАКТОВ
После создания гетероструктуры ячейки подаются на участок формирования антиотражающего и металлических контактных слоев. Здесь на них наносятся слои ITO – оксида индий олова и другие пленки, после чего пластины приобретают оттенки синего и фиолетового цвета.
5.ЛИНИЯ МЕТАЛЛИЗАЦИИ
Далее на пластины методом трафаретной печати наносится токосъемная сетка, что обеспечивает эффективный сбор и передачу генерируемой солнечной ячейкой электрической энергии.
Токосъемная сетка формируется путем продавливания серебросодержащей пасты через сетчатый трафарет и последующего процесса термообработки (впекания) при температуре около 2000С.
6. УЧАСТОК ИЗМЕРЕНИЯ ХАРАКТЕРИСТИК И СОРТИРОВКИ ГОТОВЫХ ФЭП (CIS)
Завершает процесс производства фотоэлектрических преобразователей участок измерения характеристик и сортировки. Здесь замеряются все электрофизические характеристики солнечных ячеек: ток, напряжение, мощность и т.д. и сортируются по параметрам.