B. Qureshi / Future Generation Computer Systems 94 (2019) 453–467
467
[8]
A. Varasteh, M. Goudarzi, Server consolidation techniques in virtualized data
centers: a survey, IEEE Syst. J. 11 (2) (2017) 772–783.
[9] S.B. Shaw, J.P. Kumar, A.K. Singh, Energy-performance trade-off through re-
stricted VM consolidation in cloud data center, in: International Conference
on Intelligent Computing and Control (I2C2), Coimbatore (2017), pp. 1-6.
[10]
K. Zheng, X. Wang, J. Liu, DISCO: distributed traffic flow consolidation for
power efficient data center network, in: IFIP Networking Conference (IFIP
Networking) and Workshops, Stockholm, 2017.
[11]
X. Wu, Y. Zeng, G. Lin, An energy efficient VM migration algorithm in data
centers, in: 16th International Symposium on Distributed Computing and
Applications to Business, Engineering and Science (DCABES), 2017.
[12]
B. Wang, Y. Song, X. Cui, J. Cao, Mathematical programming for server con-
solidation in cloud data centers, in: 4th International Conference on Systems
and Informatics (ICSAI), Hangzhou, 2017, pp. 678–683.
[13] X. Shi, H. Jiang, J. He, H. Jin, C. Wang, B. Yu, X. Chen, Developing an optimized
application hosting framework in clouds, J. Comput. System Sci. 79 (8) (2013)
1214–1229,
http://dx.doi.org/10.1016/j.jcss.2013.02.003
.
[14] F. Alharbi, Y.C. Tain, M. Tang, T.K. Sarker, Profile-based static vm placement for
energy-efficient data center, in: 18th IEEE International Conference on High
Performance Computing and Communications; (HPCC2016), Sydney, NSW,
(2016) pp. 1045-1052.
[15]
B. Qureshi, G. Min, D. Kouvatsos, Countering the collusion attack with a multi-
dimensional decentralized trust and reputation model, Springer J. Multimed.
Tools Appl. 66 (2) (2013) 303–323.
[16]
X. Tang, K. Li, G. Liao, K. Fang, F. Wu, A stochastic scheduling algorithm for
precedence constrained tasks on grid, Future Gener. Comput. Syst. 27 (8)
(2011) 1083–1091.
[17]
D. Poola, S.K. Garg, R. Buyya, Y. Yang, K. Ramamohanarao, Robust scheduling
of scientific workflows with deadline and budget constraints in clouds, in:
28th IEEE International Conference on Advanced Information Networking and
Applications (AINA), 2014, pp. 858–865.
[18]
M. Thelwall, K. Buckley, G. Paltoglou, D. Cai, A. Kappas, Sentiment strength
detection in short informal text, J. Am. Soc. Inf. Sci. Technol. 61 (12) (2010)
2544–2558.
[19]
E. Feller, L. Ramakrishnan, C. Morin, Performance and energy efficiency of
big data applications in cloud environments: a hadoop case study, J. Parallel
Distrib. Comput. Volumes (2015) 79–80.
[20]
J. Conejero, O. Rana, P. Burnap, J. Morgan, B. Caminero, C. Carrión, Analyzing
hadoop power consumption and impact on application qos, Future Gener.
Comput. Syst. 55 (2016) 213–223.
[21]
Z. Zhou, F. Liu, Z. Li, Bilateral electricity trade between smart grids and green
datacenters: pricing models and performance evaluation, IEEE J. Sel. Areas
Comm. 34 (12) (2016) 3993–4007.
[22]
C. Li, Y. Hu, J. Gu, J. Yuan, T. Li, Oasis: scaling out datacenter sustainably and
economically, IEEE Trans. Parallel Distrib. Syst. 28 (7) (2017) 1960–1973.
[23]
S. Ibrahim, et al., Governing energy consumption in hadoop through cpu
frequency scaling: an analysis, Future Gener. Comput. Syst. 54 (2016) 219–
232.
[24]
N. Tiwari, U. Bellur, S. Sarkar, M. Indrawan, Identification of critical parame-
ters for mapreduce energy efficiency using statistical design of experiments,
in: IEEE Intl Parallel and Distributed Processing Symposium Workshops
(IPDPSW), Chicago, IL, 2016, pp. 1170–1179.
[25]
F. AlMudarra, B. Qureshi, Issues in adopting agile development principles
for mobile cloud computing applications, in: 6th International Conference
on Ambient Systems, Networks and Technologies, London, United Kingdom,
2015, pp. 2–5.
[26]
F. Kong, X. Liu, GreenPlanning: optimal energy source selection and capacity
planning for green datacenters, in: ACM/IEEE 7th International Conference on
Cyber-Physical Systems (ICCPS), Vienna, 2016.
[27]
M. Anan, N. Nasser, A. Ahmed, A. Alfuqaha, Optimization of power and
migration cost in virtualized data centers, in: IEEE Wireless Communications
and Networking Conference, Doha, 2016, pp. 1–5.
[28]
X. Dai, J. Wang, B. Bensaou, Energy-Efficient VMs scheduling in multi-tenant
data centers, IEEE Transactions on Cloud Computing (2016) 210–221.
[29]
K. Shvachko, H. Kuang, S. Radia, R. Chansler, The hadoop distributed file sys-
tem, in: The Proceedings of 26th IEEE Mass Storage Systems and Technologies
(MSST) 2010, 2010, pp. 1–10.
[30]
L. Gu, H. Li, Memory or time: performance evaluation for iterative operation
on hadoop and spark, in: 10th IEEE International Conference on High Perfor-
mance Computing and Communications, 2013, pp. 721–727.
[31]
M. Duan, K. Li, Z. Tang, G. Xiao, K. Li, Selection and replacement algorithms for
memory performance improvement in spark, Concurr. Comput.: Pract. Exper.
28 (8) (2016) 2473–2486.
[32]
M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark: cluster
computing with working sets, HotCloud 10 (10) (2010) 95–99.
[33] Z. Yang, et al., H-NVMe: A hybrid framework of NVMe-based storage system
in cloud computing environment, 36th IEEE International Performance Com-
puting and Communications Conference (IPCCC), San Diego, CA, 2017.
[34]
Y. Fukushima, T. Murase, G. Motoyoshi, et al., Determining server locations
in server migration service to minimize monetary penalty of dynamic server
migration, J. Netw. Syst. Manag. 26 (4) (2018) 993–1033.
[35]
J. Bhimani, Z. Yang, M. Leeser, N. Mi, Accelerating big data applications using
lightweight virtualization framework on enterprise cloud, in: 21st IEEE High
Performance Extreme Computing Conference (HPEC), 2017.
[36]
D. Merkel, Docker: lightweight linux containers for consistent development
and deployment, Linux J. 2014 (239) (2014) 2–8.
[37]
H. Chen, J. Zhu, Z. Zhang, et al., Real-time workflows oriented online schedul-
ing in uncertain cloud environment, J. Super-comput. 73 (2017) 4906–4921.
[38]
M. Hilman, M. Rodriguez, R. Buyya, Task-Based budget distribution strategies
for scientific workflows with coarse-grained billing periods in iaas clouds, in:
13th IEEE Intl Conf on e-Science, 2017, pp. 128–135.
[39]
N. Kim, J. Cho, E. Seo, Energy-credit scheduler: an energy-aware virtual
machine scheduler for cloud systems, Future Gener. Comput. Syst. 32 (2014)
128–137.
[40]
Q. Chen, L. Zheng, M. Guo, Z. Huang, Eewa: energy-efficient workload-aware
task scheduling in multi-core architectures, in: IEEE International Parallel
Distributed Processing Symposium Workshops, IPDPSW, 2014, pp. 642–651.
[41]
H. Nguyen, Z. Shen, X. Gu, S. Subbiah, J. Wilkes, Agile: elastic distributed
resource scaling for infrastructure-as-a-service, in: Proceedings of the 10th
International Conference on Autonomic Computing, (ICAC 13), USENIX, San
Jose, CA, 2013, pp. 69–82.
[42]
K. Ye, Z. Wu, C. Wang, B.B. Zhou, W. Si, X. Jiang, A. Zomaya, Profiling-based
workload consolidation and migration in virtualized data centers, IEEE Trans.
Parallel Distrib. Syst. 26 (3) (2015) 878–890.
[43]
Zhengyu Yang, Danlin Jia, Stratis Ioannidis, Ningfang Mi, Bo Sheng, Interme-
diate data caching optimization for multi-stage and parallel big data frame-
works, in: IEEE International Conference on Cloud Computing, 2018, pp. 277–
284.
[44]
M. Anan, N. Nasser, SLA-based optimization of energy efficiency for green
cloud computing, in: IEEE Global Communications Conference (GLOBECOM),
2015, pp. 1–6.
[45]
Z. Yang, et al., AutoTiering: automatic data placement manager in multi-tier
all-flash datacenter, in: 36th IEEE International Performance Computing and
Communications Conference (IPCCC), San Diego, CA, 2017.
[46]
K. Li, X. Tang, K. Li, Energy-efficient stochastic task scheduling on heteroge-
neous computing systems, IEEE Trans. Parallel Distrib. Syst. 25 (11) (2014)
2867–2876.
[47]
J.J. Durillo, V. Nae, R. Prodan, Multi-objective energy-efficient workflow
scheduling using list-based heuristics, Future Gener. Comput. Syst. 36 (2014)
221–236.
[48] G. Wu, M. Tang, A trading-inspired approach to the dynamic server consolida-
tion problem in data centers, in: IEEE International Conference on Computer
and Information Technology (CIT), Nadi (2016), pp. 776-782.
[49] VMWare vSphere, last accessed: 2018.
https://www.vmware.com/products/
vsphere-hypervisor.html
.
[50] Twitter API
https://twitter.com/TwitterAPI
[Last accessed: Dec, 2017].
[51] Twitter 4J Library
http://twitter4j.org/en/index.html
[Last accessed: Dec,
2017].
[52]
R.N. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose, R. Buyya, CloudSim: a
toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms, Softw. - Pract. Exp. 40 (1)
(2011) 23–50.
[53] Amazon AWS EC2 instance types.
https://aws.amazon.com/ec2/instance-
types/
.
[54]
G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, K. Vahi, Character-
izing and profiling scientific workflows, Future Gener. Comput. Syst. 29 (3)
(2013) 682–692.
[55]
B. Qureshi, S. AlWehaibi, A. Koubaa, On power consumption profiles for data
intensive workloads in virtualized hadoop clusters, in: Proceeding of 36th
IEEE Intl conf on Computer Communications (INFOCOM 2017) Atlanta, GA,
USA, 2017, pp. 653–659.
[56]
M. Blackburn, Five ways to reduce data center server power consumption, The
Green Grid (2008).
Do'stlaringiz bilan baham: