Funksiya ta’rifi, berilish usullari. Funksiyaning chegaralanganligi. Reja: Kirish I bob. Funksiya ta’rifi



Download 1,15 Mb.
bet6/11
Sana17.07.2022
Hajmi1,15 Mb.
#813886
1   2   3   4   5   6   7   8   9   10   11
Bog'liq
Kurs ishi

7-chizma
8- chizma

V  R1 nuqtalar to’plamida aniqlangan bir o’zgaruvchili y = (x) funksiyaning grafigi deb, mumkin bo’lgan barcha (x; (x)), x є V juftliklarning XOY to’g’ri burchakli koordinatalar tekisligidagi aksiga aytiladi.


R1 fazoda, x = 0 nuqtaga nisbatan simmetrik, nuqtalarning V qism to’plami va unda aniqlangan y = (x) funksiya berilgan bo’lsin.
Agar har qanday ± x є V lar uchun (-x) =(x) tenglik o’rinli bo’lsa, bir o’zgaruvchili y = (x) funksiya V to’plamda juft funksiya deyiladi. Juft funksiya grafigi 0Y ordinata o’qiga nisbatan simmetrikdir.
Agar har qanday ± x є V lar uchun (-x) = -(x) munosabat o’rinli bo’lsa, y = (x) V to’plamda toq funksiya deyiladi. Toq funksiya grafigi esa koordinatalar boshiga nisbatan simmetrikdir.
Masalan, juft natural darajali y = x2n (n є N) funksiya juft funksiyaga misol bo’lsa, toq natural darajali y = x2n–1 (n є N) toq funksiyaga misoldir.
y = (x) funksiya uchun shunday bir musbat t son mavjud bo’lsaki, funksiyaning aniqlanish sohasiga tegishli har qanday x va x + t nuqtalari uchun (x+t) =(x) tenglik bajarilsa, y = f (x) funksiya davriy funksiya deyiladi. t soni esa funksiya davri deb yuritiladi. Amalda funksiya davrlari ichidan eng kichigi T ni topish masalasi qo’yiladi, qolgan barcha davrlar uning butun karralisidan iborat bo’ladi.
Masalan, y = 5sin(0,25πx) funksiyaning eng kichik musbat davri .
y = (x) funksiya V  R1 to’plamda aniqlangan bo’lib, uning biror-bir V1 qism osti to’plamidan ixtiyoriy ravishda tanlanadigan ikki x1 va x2 nuqtalar uchun x< x2 munosabatdan f (x1)<(x2) (f (x1)≤(x2)) tengsizlik kelib chiqsa, u holda y = f (x) funksiya V1 to’plamda o’suvchi (kamayuvchi emas) deyiladi.
Agarda funksiya aniqlanish sohasiga tegishli V1 to’plamdan ixtiyoriy ravishda tanlanadigan ikki x1 va x2 nuqtalar uchun x1< x2 shartdan (x1)>(x2) ((x1) ≥ (x2) tengsizlik kelib chiqsa, y = (x) funksiya V1 to’plamda kamayuvchi (o’suvchi emas) deyiladi.
O’suvchi va kamayuvchi funksiyalarga qat’iy monoton funksiyalar deyiladi.
Masalan, y = ex aniqlanish sohasi R1 da qat’iy monoton o’suvchi funksiyaga misol bo’lsa, x haqiqiy sonning butun qismi y = [x] esa kamayuvchimas funksiyaga misol bo’la oladi.
y = (x) funksiya D(y)  R1 sohada aniqlangan bo’lib, E(y) uning qiymatlar to’plami bo’lsin. Ushbu funksiya uchun har qanday x1, x2 є D(y) lar qaralmasin, x1 ≠ x2 shart qanoatlantirilganda, (x1) ≠ (x2) munosabat bajarilsin. U holda, har bir u є E(y) songa (x) = y tenglikni qanoatlantiruvchi aniq bir x є D(y) sonni mos qo’yish mumkin, boshqacha aytganda, E(y) to’plamda berilgan y=(x) funksiyaga teskari x=g(y) funksiyani aniqlash mumkin.
Berilgan y = (x) funksiyaning qiymatlari to’plami E(y) teskari funksiya uchun aniqlanish sohasi bo’lsa, y = (x) funksiyaning aniqlanish sohasi D(y) teskari funksiya uchun qiymatlar sohasi rolini o’taydi.
Biror–bir [a; b] kesmada aniqlangan, qat’iy monoton va uzluksiz y = (x) funksiya, o’zining [(a); (b)] kesmada aniqlangan, qat’iy monoton va uzluksiz x = g(y) teskari funksiyasiga ega.
Masalan, y = sin x funksiya kesmada aniqlangan, qat’iy monoton o’suvchi va uzluksiz bo’lganidan, [ -1 ; 1 ] kesmada aniqlangan, qat’iy o’suvchi va uzluksiz x = arcsin y  teskari funksiyasiga ega.
O’zaro teskari (x) va g(x) funksiya grafiklari birinchi chorak simmetriya o’qi y = x to’g’ri chiziqqa nisbatan simmetrikdir.



Download 1,15 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   11




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish