1
cos bt + B
1
sin bt, y(t) =
A
2
cos bt + B
2
sin bt.
The trajectories are concentric circles about the origin, the origin is
called a center and is a stable one. Example:
dx
dt
= −by,
dy
dt
= bx.
56
5
Appendix A
5.1
Trigonometric functions
5.1.1
D
efinitions
• Conversion of rads to
o
and vice versa: 1
o
=
π
180
rad & 1 rad =
¡
180
π
¢
o
• Arc length: θ =
s
r
⇒ s = θ ∗ r (θ measured in rads)
• Area of a sector: A =
1
2
r
2
∗ θ (θ measured in rads)
• Trigonometric functions (defined for a positive acute angle θ of a right
triangle)
sin θ =
side opp osite θ
hyp otenuse
=
y
r
cos θ =
side adjacent to θ
hyp otenuse
=
x
r
tan θ =
side opp osite θ
side adjacent to θ
=
y
x
cot θ =
side adjacent to θ
side opp osite θ
=
x
y
sec θ =
hyp otenuse
side adjacent to θ
=
r
x
csc θ =
hyp otenuse
side opp osite θ
=
r
y
5.1.2
Relationships:
csc θ =
1
sin θ
sec ∂ =
1
cos θ
cot θ =
1
tan θ
tan θ =
sin θ
cos θ
cot θ =
cos θ
sin θ
5.1.3
Trigonometric identities
sin
2
θ + cos
2
θ = 1
tan
2
θ + 1 = sec
2
θ
1 + cot
2
θ = csc
2
θ
sin(π − θ) = sin θ
cos(π − θ) = − cos θ
tan(π − θ) = − tan θ
cot(π − θ) = − cot θ
sin(π + θ) = − sin θ
cos(π + θ) = − cos θ
tan(π + θ) = tan θ
cot(π + θ) = cot θ
sin(−θ) = − sin θ
cos(−θ) = cos θ
tan(−θ) = − tan θ
cot(−θ) = − cot θ
sin(
π
2
− θ) = cos θ
cos(
π
2
− θ) = sin θ
tan(
π
2
− θ) = cot θ
sin θ = sin(θ ± 2nπ), n = 0, 1, 2, · · ·
cos θ = cos(θ ± 2nπ), n = 0, 1, 2, · · ·
tan θ = tan(θ ± nπ), n = 0, 1, 2, · · ·
57
5.1.4
Law of cosines
If the sides of a triangle have lengths a, b, and c and if θ is the angle between
the sides with lengths a and b, then
c
2
= a
2
+ b
2
− 2ab cos θ
5.1.5
Formulas
• Addition formulas:
sin(a + b) =
sin a cos b + cos a sin b
cos(a + b) =
cos a cos b − sin a sin b
sin(a − b) = sin a cos b − cos a sin b
cos(a − b) = cos a cos b + sin a sin b
tan(a + b) =
tan a+tan b
1
−tan a tan b
tan(a − b) =
tan a
−tan b
1+tan a tan b
• Double-angle formulas:
sin 2a =
2 sin a cos a
cos 2a =
cos
2
a − sin
2
a
=
2 cos
2
a − 1
=
1 − 2 sin
2
a
tan 2a =
2 tan a
1
−tan
2
a
• Half-angle formulas:
cos
2 a
2
=
1+cos a
2
sin
2 a
2
=
1
−cos a
2
• Product-to-sum formulas:
sin a cos b =
1
2
[sin(a − b) + sin (a + b)]
sin a sin b =
1
2
[cos(a − b) + cos (a + b)]
cos a cos b =
1
2
[cos(a − b) + cos (a + b)]
• Sum-to-product formulas:
sin a + sin b =
2 sin
a+b
2
cos
a
−b
2
sin a − sin b =
2 cos
a+b
2
sin
a
−b
2
cos a + cos b =
2 cos
a+b
2
cos
a
−b
2
cos a − cos b = −2 sin
a+b
2
sin
a
−b
2
5.1.6
Amplitude and period
• Periodic function: f(x+p) = f(p), p  0. The smallest value of p is called
the fundamental period of f.
• The functions a sin bx and a cos bx have fundamental period 2π/ |b| and
their graphs oscillate between −a and a. The number | a |
58
is called the amplitude of a sin bx and a cos bx.The function tan bx has fun-
damental period π/ |b| .
5.2
Inverse trigonometric functions
The basic trigonometric functions are periodic, thus they can not have inverses,
but if we impose restrictions on their domains, we can have their inverses.
• Inverse sine: For each x in the interval [−1, 1], we define arcsin x to be
that number y in the interval
£
−
π
2
,
π
2
¤
, such that sin y = x.
arcsin(sin x) = x
x ∈
£
−
π
2
,
π
2
¤
sin(arcsin x) = x
x ∈ [−1, 1]
• Inverse cosine: For each x in the interval [−1, 1], we define arccos x to be
that number y in the interval [0, π] , such that cos y = x.
arccos(sin x) = x
x ∈ [0, π]
cos(arccos x) = x
x ∈ [−1, 1]
• Inverse tangent: For each x in the interval (−∞, +∞), we define arctan x
to be that number y in the interval
£
−
π
2
,
π
2
¤
, such that tan y = x.
arctan(tan x) = x
x ∈
£
−
π
2
,
π
2
¤
tan(arctan x) = x
x ∈ (−∞, +∞)
• Inverse cesant: For each x in the set (−∞, −1] + ∪[1, +∞), we define
arcsec x to be that number y in the set
£
0,
π
2
¤
∪
£
π,
3π
2
¤
such that sec y = x.
arcsec(sec x) = x
x ∈
£
0,
π
2
¤
∪
£
π,
3π
2
¤
sec(arcsec x) = x
x ∈ (−∞, −1] + ∪[1, +∞)
• The inverse cotangent and cosecant are of lesser importance.
5.2.1
Derivatives
d
dx
[arcsin(x)] =
1
2
√
1
−x
2
d
dx
[arccos(x)] =
−
1
2
√
1
−x
2
d
dx
[arctan(x)] =
1
1+x
2
d
dx
[arccot (x)] =
−
1
1+x
2
d
dx
[arcsec (x)] =
1
x
2
√
x
2
−1
d
dx
[arccsc (x)] =
−
1
x
2
√
x
2
−1
59
5.3
Exponentials
• f(x) = b
x
, b  0
• If b  1 then f(x) is an increasing function, while if 0 ≺ b ≺ 1 is a
decreasing and a constant one if b = 1 .
5.4
Logarithms
• f(x) = log
b
x, b  0, b 6= 1, x  0, represents that power to which b must
be raised in order to produce x.
• Properties of the logarithmic function
log
b
ln 1 = 0
log
b
ac = log
b
a + log
b
c
log
b
a
c
= log
b
a − log
b
c
log
b
a
r
= r log
b
a
log
b
1
c
= − log
b
c
log
b
b = 1
• Common logarithms: the ones that have base 10.
• Natural logarithms:the ones that have base e (e = lim
x
→+∞
¡
1 +
1
x
¢
x
⇐⇒
e = lim
x
→0
(1 + x)
1
x
).
• Properties of the natural logarithm
—
ln 1 = 0
ln ac = ln a + ln c
ln
a
c
= ln a − ln c ln a
r
= r ln a
ln
1
c
= − ln c
5.5
Hyperbolic functions
Hyperbolic functions are certain combinations of e
x
and e
−x
.They have many
applications in engineering and many properties in common with the trigono-
metric functions.
5.5.1
Definitions
hyperbolic sine
sinh x =
e
x
−e
−x
2
hyperbolic cosine
cos hx =
e
x
+e
−x
2
hyperbolic tangent
tanh x =
sinh x
cos hx
e
x
−e
−x
e
x
+e
−x
hyperbolic cotangent
coth x =
cosh x
sinh x
e
x
+e
−x
e
x
−e
−x
hyperbolic cesant
sec hx =
1
cosh x
2
e
x
+e
−x
hyperbolic cosecant
csc hx =
1
sinh x
2
e
x
−e
−x
60
5.5.2
Hyperbolic identities
cosh
2
x − sinh
2
x = 1
1 − tanh
2
x = sec h
2
x
coth
2
x − 1 = csc h
2
x
5.5.3
Why are they called hyperbolic?
For any real number t, the point (cosh t, sinh t) lies on the curve x
2
− y
2
= 1
(this curve is called hyperbola) because cosh
2
t − sinh
2
t = 1
5.5.4
Derivatives
d
dx
[sinh x] =
cosh x
d
dx
[cosh x] =
sinh x
d
dx
[tanh x] =
sec h
2
x
d
dx
[coth x] =
− csc h
2
x
d
dx
[sec hx] =
− sec hx tanh x
d
dx
[csc hx] =
− csc hx coth x
5.6
Inverse hyperbolic functions
They are particularly useful in integration.
5.6.1
Definitions
y = arcsin hx ⇐⇒
x = sinh y
for all x, y
y = arccos hx ⇐⇒ x = cosh y
x º 1, y º 0
y = arctan hx ⇐⇒ x = tanh y −1 ≺ x ≺ 1, and − ∞ ≺ x ≺ +∞
y = arccot hx ⇐⇒ x = coth y
| x |Â 1, y 6= 0
y = arcsec hx ⇐⇒
x = sec hy
0 ≺ x ¹ 1, y º 0
y = arccsc hx ⇐⇒
x = csc hy
x 6= 0, y 6= 0
5.6.2
Formulas
arcsin hx =
ln(x +
2
√
x
2
+ 1)
−∞ ≺ x ≺ ∞
arccos hx =
ln(x +
2
p
x
2
− 1) x º 1
arctan hx =
1
2
ln
1+x
1
−x
−1 ≺ x ≺ 1
arccot hx =
1
2
ln
x+1
x
−1
|x| Â 1
arcsec hx =
ln(
1+
2
√
1
−x
2
x
)
0 ≺ x ¹ 1
arccsc hx =
ln(
1
x
+
2
√
1+x
2
|x|
)
x 6= 0
61
5.6.3
Derivatives
d
dx
[arcsin hx] =
1
2
√
x
2
+1)
−∞ ≺ x ≺ ∞
d
dx
[arccos hx] =
1
2
√
x
2
−1)
x  1
d
dx
[arctan hx] =
1
1
−x
2
|x| ≺ 1
d
dx
[arccot hx] =
1
1
−x
2
|x| Â 1
d
dx
[arcsec hx] =
−
1
x
2
√
1
−x
2
0 ≺ x ≺ 1
d
dx
[arccsc hx] =
−
1
|x|
2
√
1
−x
2
x 6= 0
62
Do'stlaringiz bilan baham: |