Foydalanilgan adabiyotlar ro‘yxati o‘zbekiston Respublikasi Prezidenti 020 yil oktabrdagi pf-6079-son «Raqamli O‘zbekiston — 2030»



Download 19,33 Kb.
bet1/2
Sana06.07.2022
Hajmi19,33 Kb.
#745723
  1   2
Bog'liq
FOYDALANILGAN ADABIYOTLAR RO


FOYDALANILGAN ADABIYOTLAR RO‘YXATI
O‘zbekiston Respublikasi Prezidenti 2020 yil 5 oktabrdagi PF-6079-son «Raqamli O‘zbekiston — 2030» strategiyasini tasdiqlash va uni samarali amalga oshirish chora-tadbirlari to‘g‘risidagi Farmoni.
O‘zbekiston Respublikasi Prezidenti 2021 yil 17 fevraldagi PQ-4996-son «Sun’iy intellekt texnologiyalarini jadal joriy etish uchun shart-sharoitlar yaratish chora-tadbirlari to‘g‘risida»gi Qarori.
O‘zbekiston Respublikasi Prezidenti 2020 yil 28 apreldagi PQ-4699-son «Raqamli iqtisodiyot va elektron hukumatni keng joriy etish chora tadbirlari to‘g‘risida»gi Farmoni.
O‘zbekiston Respublikasi Prezidentining 2018 yil 19 fevraldagi PF-5349-son «Axborot texnologiyalari va kommunikatsiyalari sohasini yanada takomillashtirish chora-tadbirlari to‘g‘risida»gi Farmoni.
Вандер Плас Дж., Python для сложных задач: наука о данных и машинное обучение. / Вандер Плас Дж. СПб.: Питер, 2018 ­ 576 с.
Рашка С., Python и машинное обучение / Рашка С., пер. с англ. А. В. Логунова. М.: ДМК Пресс, 2017 ­ 418 с.
Patra A., Singh D. A Survey Report on Text Classification with Different Term Weighing Methods and Comparison between Classification Algorithms // International Journal of Computer Applications. 2013. № 7 (75). Р. 14–18.
Breiman L., Friedman J. H., Olshen R. A., Stone C. J. Classification and regression trees. Monterey, CA: Wadsworth & Brooks // Cole Advanced Books & Software, 1984.
Satyanarayana N., Ramalingaswamy C., Ramadevi Y. Survey of classification techniques in data mining // IJISET - International Journal of Innovative Science, Engineering & Technology. 2014. № 9 (1). Р. 268–278.
Burges C. J. C. A tutorial on support vector machines for pattern recognition // Data Mining and Knowledge Discovery, 1998. Vol. 2. № 2. Р. 121–167.
Crisci C., Ghattas B., Perera G. A review of supervised machine learning algorithms and their applications to ecological data // Ecological Modelling, 2012. (240). Р. 113–122.
Wang Z., Crammer K., Vucetic S. Breaking the Curse of Kernelization: Budgeted Stochastic Gradient Descent for Large-Scale SVM Training // J. of Machine Learning Research, 2012. (13). Р. 3103–3131.
Altman N. S. An introduction to kernel and nearest-neighbor nonparametric regression // The American Statistician, 1992. 46 (3). Р. 175–185.
Breiman, Leo. Random Forests //Machine Learning, 2001. 45 (1), pp. 5–32.
Kalhori S.R.N., Zeng X.-J. Evaluation and Comparison of Different Machine Learning Methods to Predict Outcome of Tuberculosis Treatment Course // J. of Intelligent Learning Systems and Applications, 2013. (5). Р. 184–193.
Pries K. H., Dunnigan R. Big Data Analytics: A practical guide for managers. // Auerbach Publications, 2015.
Нессонова М. Н. Метод рейтингового голосования комитета алгоритмов в задачах классификации с учителем // ЗМЖ, Zaporoz. med. z. 2013. № 1 (76). URL: http://cyberleninka. ru/article/n/metod-reytingovogo-golosovaniya-komiteta-algoritmov-v-zadachah-klassifikatsii-s-uchitelem (дата обращения: 28.04.2016).
Крисилов В.А. Представление исходных данных в задачах нейросетевого программирования / Одесса: ОНПУ. 2003.
База и генератор образователных ресурсов [Электронный ресурс]// МГТУ им. Н.Э. Баумана, кафедра САПР. 2003-2015. URL: http://bigor.bmstu.ru/?cnt/?doc=NN/base.cou (дата обращения 11.03.2016).
Abadi M. et al. TensorFlow: A System for Large-Scale Machine Learning //OSDI. – 2016. – Т. 16. – С. 265–283.
Dekhtyar A., Fong V. RE Data Challenge: Requirements Identification with Word2Vec and TensorFlow //Requirements Engineering Confer­ence (RE), 2017 IEEE 25th International. – IEEE, 2017. – С. 484–489.
Машина опорных векторов [Электронный ресурс] // MachineLearning.ru. – URL: http://machinelearning.ru/wiki/index.php?title=Метод_опорных_векторов (дата обращения: 06.06.2019).
Е.С. Попова, В.Г. Спицын, Ю.А. Иванова. Исползование искусственных нейронных сетей для решения задачи классификации текста. Conference_tpu-17-20.02.2020-C04.
https://monkeylearn.com/text-classification/#:~:text=Deep%20learning%20architectures%20offer%20huge,Recurrent%20Neural%20Networks%20(RNN).
LIU, C.; CAO, Y; LUO Y; CHEN, G; VOKKARANE, V, MA, Y; CHEN, S; HOU, P. A new Deep Learning-based food recognition system for dietary assessment on an edge computing service infrastructure. IEEE Transactions on Services Computing, PP(99):1–13. 2017
A. H. Aliwy. Comparative Study of Five Text Classification Algorithms with their Improvements / Ahmed H. Aliwy, Esraa H. Abdul Ameer // International Journal of Applied Engineering. – 2017 – Volume 12, Number 14 (2017) pp. 4309-4319, с. 4314.
J. Tang. Feature Selection for Classification: A Review. / Jiliang Tang, Salem Alelyani, Huan Liu // Data Classification: Algorithms and Applications. – 2014, с.1.
S. Pahwa, D. Sinwar. Comparison Of Various Kernels Of Support Vector Machine // International Journal for Research in Applied Science & Engineering Technology (IJRASET). - 2015. - Volume 3, Issue VII.
T. Pranckevicius, V. Marcinkevičius. Comparison of Naive Bayes, Random Forest, Decision Tree, Support Vector Machines, and Logistic Regression Classifiers for Text Reviews Classification // Baltic J. Modern computing. - 2017. - Volume 5, №2.
V. C.Gandhi. Review on Comparison between Text Classification Algorithms / Vaibhav C.Gandhi, Jignesh A.Prajapati // International Journal of Emerging Trends & Technology in Computer Science (IJETTCS). – 2012 – Volume 1, Issue 3.
G. Chandrashekar, F. Sahin. A survey on feature selection methods. // Computers & Electrical Engineering. – 2014. – Volume 40, Issue 1, Pages 16-28.

Download 19,33 Kb.

Do'stlaringiz bilan baham:
  1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish