FOYDALANILGAN ADABIYOTLAR RO‘YXATI
O‘zbekiston Respublikasi Prezidenti 2020 yil 5 oktabrdagi PF-6079-son «Raqamli O‘zbekiston — 2030» strategiyasini tasdiqlash va uni samarali amalga oshirish chora-tadbirlari to‘g‘risidagi Farmoni.
O‘zbekiston Respublikasi Prezidenti 2021 yil 17 fevraldagi PQ-4996-son «Sun’iy intellekt texnologiyalarini jadal joriy etish uchun shart-sharoitlar yaratish chora-tadbirlari to‘g‘risida»gi Qarori.
O‘zbekiston Respublikasi Prezidenti 2020 yil 28 apreldagi PQ-4699-son «Raqamli iqtisodiyot va elektron hukumatni keng joriy etish chora tadbirlari to‘g‘risida»gi Farmoni.
O‘zbekiston Respublikasi Prezidentining 2018 yil 19 fevraldagi PF-5349-son «Axborot texnologiyalari va kommunikatsiyalari sohasini yanada takomillashtirish chora-tadbirlari to‘g‘risida»gi Farmoni.
Вандер Плас Дж., Python для сложных задач: наука о данных и машинное обучение. / Вандер Плас Дж. СПб.: Питер, 2018 576 с.
Рашка С., Python и машинное обучение / Рашка С., пер. с англ. А. В. Логунова. М.: ДМК Пресс, 2017 418 с.
Patra A., Singh D. A Survey Report on Text Classification with Different Term Weighing Methods and Comparison between Classification Algorithms // International Journal of Computer Applications. 2013. № 7 (75). Р. 14–18.
Breiman L., Friedman J. H., Olshen R. A., Stone C. J. Classification and regression trees. Monterey, CA: Wadsworth & Brooks // Cole Advanced Books & Software, 1984.
Satyanarayana N., Ramalingaswamy C., Ramadevi Y. Survey of classification techniques in data mining // IJISET - International Journal of Innovative Science, Engineering & Technology. 2014. № 9 (1). Р. 268–278.
Burges C. J. C. A tutorial on support vector machines for pattern recognition // Data Mining and Knowledge Discovery, 1998. Vol. 2. № 2. Р. 121–167.
Crisci C., Ghattas B., Perera G. A review of supervised machine learning algorithms and their applications to ecological data // Ecological Modelling, 2012. (240). Р. 113–122.
Wang Z., Crammer K., Vucetic S. Breaking the Curse of Kernelization: Budgeted Stochastic Gradient Descent for Large-Scale SVM Training // J. of Machine Learning Research, 2012. (13). Р. 3103–3131.
Altman N. S. An introduction to kernel and nearest-neighbor nonparametric regression // The American Statistician, 1992. 46 (3). Р. 175–185.
Breiman, Leo. Random Forests //Machine Learning, 2001. 45 (1), pp. 5–32.
Kalhori S.R.N., Zeng X.-J. Evaluation and Comparison of Different Machine Learning Methods to Predict Outcome of Tuberculosis Treatment Course // J. of Intelligent Learning Systems and Applications, 2013. (5). Р. 184–193.
Pries K. H., Dunnigan R. Big Data Analytics: A practical guide for managers. // Auerbach Publications, 2015.
Нессонова М. Н. Метод рейтингового голосования комитета алгоритмов в задачах классификации с учителем // ЗМЖ, Zaporoz. med. z. 2013. № 1 (76). URL: http://cyberleninka. ru/article/n/metod-reytingovogo-golosovaniya-komiteta-algoritmov-v-zadachah-klassifikatsii-s-uchitelem (дата обращения: 28.04.2016).
Крисилов В.А. Представление исходных данных в задачах нейросетевого программирования / Одесса: ОНПУ. 2003.
База и генератор образователных ресурсов [Электронный ресурс]// МГТУ им. Н.Э. Баумана, кафедра САПР. 2003-2015. URL: http://bigor.bmstu.ru/?cnt/?doc=NN/base.cou (дата обращения 11.03.2016).
Abadi M. et al. TensorFlow: A System for Large-Scale Machine Learning //OSDI. – 2016. – Т. 16. – С. 265–283.
Dekhtyar A., Fong V. RE Data Challenge: Requirements Identification with Word2Vec and TensorFlow //Requirements Engineering Conference (RE), 2017 IEEE 25th International. – IEEE, 2017. – С. 484–489.
Машина опорных векторов [Электронный ресурс] // MachineLearning.ru. – URL: http://machinelearning.ru/wiki/index.php?title=Метод_опорных_векторов (дата обращения: 06.06.2019).
Е.С. Попова, В.Г. Спицын, Ю.А. Иванова. Исползование искусственных нейронных сетей для решения задачи классификации текста. Conference_tpu-17-20.02.2020-C04.
https://monkeylearn.com/text-classification/#:~:text=Deep%20learning%20architectures%20offer%20huge,Recurrent%20Neural%20Networks%20(RNN).
LIU, C.; CAO, Y; LUO Y; CHEN, G; VOKKARANE, V, MA, Y; CHEN, S; HOU, P. A new Deep Learning-based food recognition system for dietary assessment on an edge computing service infrastructure. IEEE Transactions on Services Computing, PP(99):1–13. 2017
A. H. Aliwy. Comparative Study of Five Text Classification Algorithms with their Improvements / Ahmed H. Aliwy, Esraa H. Abdul Ameer // International Journal of Applied Engineering. – 2017 – Volume 12, Number 14 (2017) pp. 4309-4319, с. 4314.
J. Tang. Feature Selection for Classification: A Review. / Jiliang Tang, Salem Alelyani, Huan Liu // Data Classification: Algorithms and Applications. – 2014, с.1.
S. Pahwa, D. Sinwar. Comparison Of Various Kernels Of Support Vector Machine // International Journal for Research in Applied Science & Engineering Technology (IJRASET). - 2015. - Volume 3, Issue VII.
T. Pranckevicius, V. Marcinkevičius. Comparison of Naive Bayes, Random Forest, Decision Tree, Support Vector Machines, and Logistic Regression Classifiers for Text Reviews Classification // Baltic J. Modern computing. - 2017. - Volume 5, №2.
V. C.Gandhi. Review on Comparison between Text Classification Algorithms / Vaibhav C.Gandhi, Jignesh A.Prajapati // International Journal of Emerging Trends & Technology in Computer Science (IJETTCS). – 2012 – Volume 1, Issue 3.
G. Chandrashekar, F. Sahin. A survey on feature selection methods. // Computers & Electrical Engineering. – 2014. – Volume 40, Issue 1, Pages 16-28.
Do'stlaringiz bilan baham: |