Firm Dynamics, On-the-Job Search, and Labor Market Fluctuations



Download 280,13 Kb.
bet25/30
Sana09.07.2022
Hajmi280,13 Kb.
#763037
1   ...   22   23   24   25   26   27   28   29   30
Bog'liq
Savdo qilish yoki savdo qilmaslik

Proof of Proposition 4
The derivations of (28) and (29) are provided in the main text, so we focus on establishing existence here.
Consider first the limit as θ→0⁠, which implies λ→0⁠. It can be verified that Proposition 1 and its proof apply, and that the boundaries satisfy 0<ml<mh<∞ in this limit. Furthermore, from Proposition 2, the hiring region becomes degenerate, mumh⁠. Using Proposition 3, and applying L’Hôpital’s rule, the worker distribution G(m)→ln(m/ml)/ln(mh/ml)⁠. It follows from (28) and (29) that limθ→0UJC(θ)<L=limθ→0UBC(θ)⁠.
Now consider the limit as θ→∞⁠, which implies λ→∞⁠. It can be verified that the roots of the fundamental quadratic (21) satisfy γ1→−∞ and γ2→1/(1−α)⁠. Abel and Eberly (1996) prove that
0<φ(0)=γ1γ1−11ρ(0)<φ(1)=1ρ(0)<γ2γ2−11ρ(0)=φ(∞).
(A.33)
It follows that the solution to (A.4) satisfies G→∞⁠, with φ(G)→1/[αρ(0)] and φ(G−1)→1/ρ(0)⁠. Thus, the boundaries in (A.5) satisfy (1−ω1)mlαω0⁠, and (1−ω1)mh→∞. Now, note from Proposition 3 that G(m)→0 for all m∈(ml,mh)⁠. Thus, g(ml)→0⁠, and ς→0⁠. Furthermore, since mh→∞⁠, it must be that ∫m1/(1−α)g(m)dm→∞⁠. It follows from (28) and (29) that limθ→∞UJC(θ)=L>0=limθ→∞UBC(θ)
Since all objects in (28) and (29) are continuous in λ⁠, and thereby θ⁠, it follows that there must exist at least one θ∈(0,∞) that satisfies (28) and (29). □
Proof of Lemma 2
(a) s→0⁠. To establish (i), simply note that Proposition 1 and its proof apply for all s≥0⁠. Property (ii) follows directly from Proposition 2: since δ(mh)→0 as s→0⁠, and since δ(m) is declining for m>mh for all s>0⁠, it follows that mumh⁠. Finally, (iii) emerges from Proposition 3 and application of L’Hôpital’s rule,
G(m)→(m/ml)1−ασ2/2−1(mh/ml)1−ασ2/2−1→(m/ml)1−ασ2/2ln(m/ml)(mh/ml)1−ασ2/2ln(mh/ml)→ln(m/ml)ln(mh/ml),ass→0.
(A.34)
(b) α→1⁠, holding fixed X and ˜σ2≡σ2/(1−α)⁠. For (i), note that, combining the latter with the aggregate stationarity condition (24), the fundamental quadratic (21) is
ρ(γ)=−12˜σ2(1−α)γ2−[−12˜σ2+(1−α)]γ+r+=0.
(A.35)
It follows that γ1→−2ρ(0)/˜σ2≡˜γ1⁠, and γ2→∞⁠, as α→1⁠. Thus, (A.3) and (A.4) become
ϑ(G)→{1forG≥1G1−˜γ1forG<1,andϑ(G)→1ρ(1)[1−ϑ(G)˜γ1].
(A.36)
The latter and (A.4) imply that the solution for G satisfies limα→1G>1⁠, and that therefore
limα→1φ(G)=1ρ(1)(1−1~γ1)>1ρ(1)(1−G˜γ1−1˜γ1)=limα→1φ(G−1).
(A.37)
It follows from (A.5) that 0<ml<mh<∞⁠. To verify (ii), note from (A.12) that δ′(m)→−∞ as α→1 for all m>mh⁠. (iii) follows from Proposition 3 and the definition of ˜σ⁠. □

Download 280,13 Kb.

Do'stlaringiz bilan baham:
1   ...   22   23   24   25   26   27   28   29   30




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish