Financial risks faced by investors and financial institutions



Download 2,33 Mb.
bet3/6
Sana11.04.2022
Hajmi2,33 Mb.
#542033
1   2   3   4   5   6
Bog'liq
Group 12

Mean Absolute Deviation
Conditional Value at Risk
(cVaR)
Value at Risk
(VaR)
Measures the potential losses of a specific investment or portfolio.
Algebraically: VaR (x, α) = min {u: F (x, u) ≥ 1−a} = min {u: P {R (x, r̃) ≤ u} ≥ 1 − a}
Risk assessment measure that quantifies the amount of tail risk an investment has.
Algebraically: CVaR = (1 / 1 – c) ∫VaR xp(x) dx
Uses the absolute deviation of the rate of return of a portfolio instead of the variance to measure the risk.
Algebraically: MAD = Σ | xi – x | / n
Stressed VaR and cVaR
Are estimated under the use of a historical data frame window of a stressed and high volatile period in prices of underlying assets.
Should be able to quantify the capital that a financial institution should keep meeting its liabilities in the case things go wrong and potential losses come true.
A risk measure is categorized as coherent if satisfies the next four axioms:
Monotonicity: The worst the output of a portfolio the higher the level of risk measure should be.
Algebraically: ∀ x1, x2 with x1< x2 →f (x1) < f(x2)
Coherent Risk Measures:
Translation Invariance: Portfolio f(xi) = A, C is added, risk measure of the new portfolio Xi′= xi + C should be decreased by C and be f(Xi′) = A − C, C work as a buffer when is needed.
Homogeneity: Portfolio f(xi) = A, changes by a factor k (∀ k ∈ ℝ+), relative amount of each asset remains the same, risk measure of the new portfolio (Xi′=kXi) should be f(kxi)=kA
Subadditivity: If Xi (∀ i ϵ ℕ) portfolio has a f(Xi)=Ai amount of risk measure then the merged portfolio should have risk amount up to f(Σnxi) ≤ Σnf(xi)
With Modern Portfolio Theory (MPT) Markowitz introduced a new kind of risk measurement based on two components, the maximization of return and the minimization of risk of every investment which is totally described by variance.
Var(x) = E(x−E(x))2 = E(x2) − E(x)2
Cov(x,y) = E(x−E(x))(y−E(y)) = E(xy)−E(x)E(y)
Beta: Basic pillar for developing pricing models such as CAMP and arbitrage pricing model which calculate the expected return of an asset (or a portfolio) using beta and expected market returns over a specific period.

Download 2,33 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish