Эволюция строения нервной системы реферат



Download 21,5 Kb.
Sana14.07.2022
Hajmi21,5 Kb.
#795655
TuriРеферат
Bog'liq
Эволюция строения нервной системы реферат


Эволюция строения нервной системы реферат
Нервная система требуется далеко не всем живым существам. Она не нужна тем, кто был и будет неподвижен, то есть растениям. Для выживания им не требуется ни быстрой реакции, ни мгновенной перестройки организма. Растения, в частности наземные, ведут преимущественно прикрепленный образ жизни. Специальной нервной системы они не имеют, но также реагируют на внешние воздействия - свет, температуру, давление и т.д. Эти реакции носят название тропизмов (фототропизм, геотропизм, хемотропизм и пр.). Эти реакции есть, но осуществляются они очень медленно. Однако у некоторых растений возможны гораздо более быстрые движения, например у мимозы, венериной мухоловки и др. Все основные движения растений обусловлены главным образом изменением тургорного давления в клетках. Растения прекрасно обходятся без нервной системы, но тем не менее их клетки могут воспринимать химические, физические и электромагнитные воздействия. Борьба за существование между растениями в дождевом лесу Цейлона напоминает борьбу в животном мире. насекомоядные растения быстро закрывают листья при прикосновении
Водоросли перемещаются в толще воды в основном пассивно, т.е. их перемещения обеспечиваются токами воды, хотя некоторые перемещаются за счет движения цитоплазмы или при помощи жгутов и ресничек. Одноклеточные животные не имеют нейронов, так как их тело состоит из одной клетки. Однако туфелька, тело которой покрыто многочисленными ресничками, перемещается. Это осуществляется системой тончайших нитей, так называемых нейромоторных волокон, которые тянутся от переднего конца тела ко всем ресничкам. Их (одноклеточных животных) реакции на внешние воздействия носят название таксисов (хемотаксис, фототаксис, термотаксис и др.). У некоторых одноклеточных, как например у эвглены, появляются уже органоиды для восприятия раздражений из внешней среды (стигма, или глазок, у эвглены, хламидомонады и др.) [Приложение 2]. У амебы, еще нет ни специальных рецепторов, ни специального двигательного аппарата, ни чего-либо похожего на нервную систему. Любым участком своего тела амеба может воспринимать раздражение и реагировать на него своеобразным движением образованием выроста протоплазмы, или псевдоподии. Выпуская псевдоподию, амеба передвигается к раздражителю, например к пище. Такая регуляция называется гуморальной, или донервной. У многоклеточных организмов в процессе приспособительной эволюции возникает специализация различных частей тела. Появляются клетки, а затем и органы, приспособленные для восприятия раздражений, для движения и для функции связи и координации. Это нервная форма регуляции. По мере развития нервной системы нервная регуляция все больше подчиняет себе гуморальную, так что образуется единая нейрогуморальная регуляция, проходящая в процессе филогенеза следующие основные этапы: сетевидная нервная система, узловая нервная система, трубчатая нервная система.
Появление нервных клеток не только позволило передавать сигналы на большее расстояние, но и явилось морфологической основой для зачатков координации элементарных реакций, что приводит к образованию целостного двигательного акта.
В дальнейшем по мере эволюции животного мира происходит развитие и усовершенствование аппаратов рецепции, движения и координации. Возникают разнообразные органы чувств, приспособленные для восприятия механических, химических, температурных, световых и иных раздражителей. Появляется сложно устроенный двигательный аппарат, приспособленный, в зависимости от образа жизни животного, к плаванию, ползанию, ходьбе, прыжкам, полету и т. д. В результате сосредоточения, или централизации, разбросанных нервных клеток в компактные органы возникают центральная нервная система (ЦНС) и периферические нервные пути.
Цель курсовой работы: Рассмотреть изменение нервной системы на разных этапах эволюции, от растений до человека.
Объект исследования: Эволюция.
Предмет исследования: Нервная система.
Метод исследования: Анализ литературы по данной теме.
Эволюционное развитие нервной системы выражалось в увеличении числа нервных клеток (нейронов), в дифференциации формы нейронов и их функциональной специализации, в усложнении межнейронных связей, в группировке нейронов с образованием узлов и, наконец, в централизации нервной ткани. Среди беспозвоночных наиболее развита нервная система у членистоногих (насекомых, пауков, крабов, омаров) и у головоногих моллюсков (у кальмаров и осьминогов наблюдается цефализация, т.е. развитие головной капсулы, в которой сконцентрированы нейроны, управляющие поведением организма). У этих животных, кроме головного мозга, развивается нервный тяж, аналогичный спинному мозгу позвоночных. У кольчатых червей и у примитивных представителей членистоногих имеется по паре ганглиев в каждом сегменте тела, а у более высокоорганизованных ганглии сливаются в общий ганглий. Особенно высокого развития у членистоногих достигают органы чувств - сложные глаза, органы химического чувства, механорецепторы, органы слуха и др. Головной мозг и ганглии включают огромное число вставочных нейронов, выполняющих интегративные функции. Существует даже подсистема, аналогичная вегетативной нервной системе позвоночных, иннервирующая сердце, пищеварительный тракт и главные эндокринные органы.
В связи с выходом на сушу и разнообразием форм поведения у позвоночных животных продолжается усложнение нервной подсистемы. У позвоночных нервный тяж расположен на спинной стороне тела и имеет центральную полость, тогда как у беспозвоночных нервная цепочка расположена на брюшной стороне, под пищеварительным трактом и не имеет полости внутри. У рыб, амфибий, рептилий, птиц и млекопитающих нервная трубка заключена в позвоночный столб, а из переднего отдела нервной трубки образуются отделы головного мозга, заключенные в черепную коробку. Начиная с амфибий, формируется кора головного мозга, наибольшего развития достигая у млекопитающих, особенно у человека. Основной план развития и строения нервной системы у всех позвоночных сходен, различия же касаются, главным образом, развития отдельных частей головного мозга и размеров последнего по отношению к размерам спинного мозга, формирования тесной связи между гипоталамусом и гипофизом. С выходом позвоночных животных на сушу в их нервной системе произошли большие изме­нения, обеспечившие приспособления к новым условиям существовании. Особое значение в преобразовании мозга сыграли два обстоя­тельства: переход ведущей роли от органов обоняния и вкуса к органам зрения и слуха и замена характерного для живущих в воде рыб передвижения при помощи всего тела более со­вершенным — при помощи конечностей. Пере­стройка мозга коснулась главным образом больших полушарий, в плаще которых около
250 млн лет назад началось усиленное развитие коры.
В спинном мозге рептилий хорошо выраже­ны задние и особенно передние рога серого ве­щества. Они делят лежащее снаружи белое вещество на канатики: передние, боковые и зад­ние. В продолговатом мозге развиваются тонкий и клиновидный бугорки, а также верхнее сенсор­ное ядро тройничного нерва. В мозжечке (рис. 3.57, б) хорошо развиты тело и ушковидные до­ли. В среднем мозге у некоторых ящериц и змей позади зрительных долей выдаются еще два бугра (заднее двухолмие млекопитающих). В по­крышке ножек впервые появляется красное ядро. В промежуточном мозге зрительный бугор относительно велик и уже делится на ряд ядер. Одновременно развиваются связи их с корой.
Конечный мозг большинства рептилий состоит главным образом из базальных ганглиев. Кроме древней развивается старая кора, которая хо­рошо отделена уже от базальных ганглиев и представляет собой переход от древней к бо­лее высокоразвитой новой коре. Начав свое раз­витие у амфибий на медиальной поверхности по­лушария, старая кора распространяется у репти­лий и на дорсальную поверхность. Однако вся эта филогенетически ранняя кора продолжает оставаться связанной главным образом с обоня­тельными и интерорецептивными импульсами органов чувств, приобретает общие корреляци­онные функции.
Спинной мозг, млекопитающих укорочен и оканчивается тонкой концевой нитью. В мес­тах отхождения корешков спинно-мозговых нер­вов конечностей он утолщен. В нем особенно развиты передние канатики, где прогрессивно увеличивается количество волокон передних кортико-спинальных путей; становится немного больше и перекрещенных волокон и в кортико-спинальных путях боковых канатиков. У собаки волокна этих пирамидных путей составляют око­ло 7% всего белого вещества спинного мозга, у обезьян — 20% и у человека — 30%. Эти волокна, соединяя кору больших полушарий с двигательными нейронами передних рогов, все более подчиняют ее влиянию работу мышц.
Продолговатый мозг невелик. В его передних канатиках развиваются пирами­ды, в боковых — оливы и нижние ножки моз­жечка. В вентральной части моста появляется новая система клеток и волокон, увеличивающая основание моста, впервые появляются и средние ножки мозжечка. В мозжечке прогрессивно раз­виваются полушария, связанные с корой боль­ших полушарий через основание моста. В сред­нем мозге вместо двухолмия развивается четве­рохолмие, причем наиболее сложный анализ зрительных сигналов перемещается из передне­го двухолмия в латеральное коленчатое тело промежуточного мозга и затылочную область ко­ры. Так же и в слуховой системе наиболее слож­ные функции передаются из ядер улиткового нерва в ромбовидной ямке и из заднего двухол­мия в медиальное коленчатое тело и височную область коры. Прогрессивное развитие претер­певает таламус промежуточного мозга, становясь коллектором всех видов чувствительности, направляющейся в кору больших полушарий. В конечном мозге огромного развития достига­ет кора, разрастающаяся не только назад (заты­лочные доли), но и вперед (лобные доли) и вниз (височные доли). У однопроходных, сумчатых, насекомоядных и грызунов полушария еще от­носительно невелики и имеют гладкую поверх­ность. У хищных и копытных возникают бороз­ды, сильно увеличивающие поверхность коры. В палеогене с появлением приматов (60 млн лет назад) полушария постепенно покрываются из­вилинами и бороздами, характерными для обезьян и человека. Ведущая роль в регуляции функций переходит к новой коре, которая связана со всеми видами чувствитель­ности и в ассоциативных областях которой (теменные, лобная) осуществляются высшие ин-тегративные функции. Возросшая, главным об­разом за счет увеличения ассоциативных облас­тей, новая кора сдвигает древнюю и старую кору на нижнюю и медиальную поверхности полушария. В ряду млекопитающих новая кора занимает: у ежа — 32%, у кролика — 56%, у собаки — 84%, у человека — 96% всей по­верхности полушария.
Download 21,5 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish