Evaluation Of Thermophysical Properties, Friction Factor And Heat Transfer Of Alumina Nanofluid Flow In Tubes



Download 4,43 Mb.
Pdf ko'rish
bet2/72
Sana22.01.2022
Hajmi4,43 Mb.
#400840
1   2   3   4   5   6   7   8   9   ...   72
Bog'liq
2012-yilda qilingan desertatsiya Amerikada


particle volume fraction 
19 
Figure 2.3 
Modes of energy transport in nanofluid 
23 
Figure 2.4 
Hysteresis observed on viscosity for alumina (47 nm, 7%)- 
water nanofluid 
28 
Figure 2.5 
Nanofluid viscosity vs. temperature for low volume fraction of 
nanoparticles 
29 
Figure 2.6 
The relative viscosity as a function of temperature in water 
based alumina nanofluids 
31 
Figure 2.7 
Schematic  of  experimental  setup  to  measure  heat  transfer  and 
pressure drop of nanofluid 
32 
Figure 2.8 
Schematic  of  experimental  setup  for  convective  heat  transfer 
and viscous pressure drop measurement 
35 
 
 
 


viii 
 
Figure 2.9 
Schematic of experimental setup for measuring pressure drop 
and heat transfer 
39 
Figure 3.1 
TC 550MX constant temperature bath 
43 
Figure 3.2 
DV II + Pro Extra Brookfield viscometer connected to the TC-
550MX temperature bath 
45 
Figure 3.3 
Schematic of thermal conductivity measurement using the KD2 
Pro thermal property analyzer 
47 
Figure 3.4 
Schematic of experimental loop for conducting pressure drop 
and heat transfer measurements 
50 
Figure 3.5 
Flow loop reservoir  
52 
Figure 3.6  
Liquiflow sealed gear pump 
53 
Figure 3.7 
Micro Motion mass flow sensor connected to a 1700R 
transmitter 
54 
Figure 3.8 
Three Rosemount pressure transmitters (model 3051) 
connected in parallel 
55 
Figure 3.9 
Agilent data acquisition unit (model 34972A) 
56 
Figure 3.10 
Thermocouple wire tip cemented to the test section outer wall 
with the help of Omega bond cement 
57 
Figure 3.11 
N5761A Agilent DC power supply unit 
58 
Figure 3.12 
304 Hypodermic tubing of 6 gauge, 0.203 inches OD, 0.183 
inches ID and 36 inches length. 
59 
Figure 3.13 
304 Hypodermic tubing of 10 gauge, 0.134 inches OD, 0.118 
inches ID and 36 inches length. 
60 
 
 
 


ix 
 
Figure 3.14 
304 Hypodermic tubing of 10 gauge, 0.134 inches OD, 0.118 
inches ID and 18 inches length 
60 
Figure 3.15 
Thermal conductivity measurement for a standard calibration 
fluid at a temperature of 20°C 
62 
Figure 3.16  
Ameterk hand pump for calibration of the pressure transducers 
63 
Figure 3.17  
Calibration graph for 0–9 psi pressure transmitter 
64 
Figure 3.18. 
Calibration graph for 0–36 psi pressure transmitter 
64 
Figure 3.19  
Calibration graph for 0–300 psi pressure transmitter 
65 
Figure 3.20  
Viscosity vs. temperature curve for the given standard viscosity 
fluid (The fluid has a viscosity of 493 cP at 25°C) 
66 
Figure 3.21  
RTD readings vs. thermocouple readings for the TT-T-36-SLE-
1000 thermocouple 
67 
Figure 3.22  
RTD readings vs. thermocouple readings for the TMQSS-0.0U-
6 thermocouple 
68 
Figure 3.23 
Stainless steel thermal conductivity vs. temperature, Ho et al. 
(1977) 
75 
Figure 4.1 
Comparison between measured value of thermal conductivity 
for distilled water at temperature range from 7°C t0 50°C with 
the standard value 
78 
Figure 4.2 
Plot between the measured friction factor of water in different 
tube diameter vs. the Reynolds number 
81 
Figure 4.3 
Comparison of the measured friction factor of water in different 
tube diameter with the value of friction factor calculated from 
the Blasius (1913) correlation 
82 
 
 
 



 
Figure 4.4 
Comparison of the measured friction factor of water in different 
tube diameter with the value of friction factor calculated from 
the Bhatti and Shah (1987) correlation 
83 
Figure 4.5 
Comparison of the measured friction factor of water in different 
tube diameter with the value of friction factor calculated from 
the Drew et al. (1932) correlation 
83 
Figure 4.6 
Comparison of the measured friction factor of water in different 
tube diameter with the value of friction factor calculated from 
the Churchill (1977) correlation 
84 
Figure 4.7 
Measured Nusselt number vs. Reynolds number for water 
flowing in different tubes 
87 
Figure 4.8 
Plot showing comparison of the measured Nusselt number and 
the Nusselt number given by the Dittus and Boelter correlation 
for the 0.175 inch ID tube 
88 
Figure 4.9 
Plot showing comparison of the measured Nusselt number and 
the Nusselt number given by the Gnielinski correlation for the 
0.175 inch ID tube. 
89 
Figure 4.10 
Plot showing comparison of the measured Nusselt number and 
the Nusselt number given by the Dittus and Boelter correlation 
for the 0.118 inch ID, 36 inch long tube 
89 
Figure 4.11 
Plot showing comparison of the measured Nusselt number and 
the Nusselt number given by the Gnielinski correlation for the 
0.118 inch ID, 36 inch long tube 
90 
Figure 4.12 
Plot showing comparison of the measured Nusselt number and 
the Nusselt number given by the Dittus and Boelter correlation 
for the 0.118 inch ID, 18  inch long tube 
90 
Figure 4.13 
Plot showing comparison of the measured Nusselt number and 
the Nusselt number given by the Gnielinski (1976) correlation 
for the 0.118 inch ID, 18 inch long tube 
91 
 
 
 


xi 
 
Figure 4.14 
Plot showing the thermal conductivity vs. temperature for water 
and NF. A plot for the thermal conductivity ratio vs. 
temperature is also shown. 
92 
Figure 4.15 
Plot comparing the values of measured thermal conductivity 
ratio and the thermal conductivity ratio given by Maxwell 
(1892) equation 
94 
Figure 4.16 
Plot comparing the values of measured thermal conductivity 
ratio and the thermal conductivity ratio given by Beck et al. 
(2009) equation correlation   
95 
Figure 4.17 
Plot comparing the values of measured thermal conductivity 
ratio and the thermal conductivity ratio given by Prasher et al. 
(2005) correlation 
95 
Figure 4.18 
Viscosity vs. temperature for water and NF 
96 
Figure 4.19 
Plot showing the viscosity vs. temperature for different 
concentration Al
2
O
3
/water nanofluid 
97 
Figure 4.20 
Plot showing the relative viscosity vs. temperature for different 
concentration Al
2
O
3
/water nanofluid 
98 
Figure 4.21 
Plot showing the viscosity vs. volume concentration of 
nanoparticles for Al2O3/water nanofluid at different 
temperatures 
99 
Figure 4.22 
Plot between the shear stress and shear rate for NF 
100 
Figure 4.23 
Plot showing the viscosity vs. temperature for the NF. The NF 
is first heated from a temperature of 6°C to30°C and then again 
cooled to 6°C 
101 
Figure 4.24 
Plot showing the viscosity vs. temperature for the NF. The NF 
is first heated from a temperature of 6°C to 40°C and then 
again cooled to 6°C 
102 
 
 
 


xii 
 
Figure 4.25 
Plot showing the viscosity vs. temperature for the NF. The NF 
is first heated from a temperature of 6°C to 50°C and then 
again cooled to 6°C 
102 
Figure 4.26 
Plot showing the viscosity vs. temperature for the NF. The NF 
is first heated from a temperature of 6°C to 60°C and then 
again cooled to 6°C 
103 
Figure 4.27 
Plot showing the viscosity vs. temperature for the NF. The NF 
is first heated from a temperature of 6°C to 62°C and then 
again cooled to 6°C 
103 
Figure 4.28 
Plot showing the viscosity vs. temperature for the NF. The NF 
is first heated from a temperature of 6°C to 70°C and then 
again cooled to 6°C 
104 
Figure 4.29 
Plot between the friction factor and Reynolds number for the 
NF flowing through 0.118 inch ID, 36 inch long tube 
105 
Figure 4.30 
 Plot between the friction factor and Reynolds number for the 
NF flowing through 0.175 inch ID, 36 inch long tube 
105 
Figure 4.31 
Plot between the Poiseuille number vs. the Reynolds number 
for the NF flowing through the 0.175 inch ID, 36 inch long 
tube. 
106 
Figure 4.32 
Plot between the Poiseuille number vs. the Reynolds number 
for the NF flowing through the 0.118 inch ID, 36 inch long 
tube. 
106 
Figure 4.33 
Nusselt number vs. 
x
+ for 6% vol. alumina/water nanofluid 
flowing through a 0.175 inch ID, 34 inch long heated test 
section 
109 
Figure 4.34 
Nusselt number vs. 
x
+ for 6% vol. alumina/water nanofluid 
flowing through a 0.118 inch ID, 34 inch long heated test 
section.  
110 
 
 
 


xiii 
 
Figure 4.35 
Nusselt number vs. 
x
+ for 6% vol. alumina/water nanofluid 
flowing through a 0.118 inch ID, 18 inch long heated test 
section.  
111 
Figure 5.1 
Plot showing the convective heat transfer coefficient vs. gas 
mass flow rate for a two phase air-water mixture 
115 
 
 


xiv 
 
 
LIST OF TABLES 
 
Table 
Description 
Page 
Table 2.1 
Model parameters for Al
2
O
3
-water nanofluid 
21 
Table 2.2 
Empirical constants for Al
2
O
3
-water, Hosseini et al. (2010) 
26 
Table 3.1 
Uncertainty in friction factor 
73 
Table 3.2 
Uncertainty in measurement of 

Download 4,43 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   72




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish