Ergodicity and central limit theorem for random interval homeomorphisms



Download 175,29 Kb.
bet5/8
Sana30.06.2022
Hajmi175,29 Kb.
#721276
1   2   3   4   5   6   7   8
Bog'liq
2 5368504052491492734

i = (i1,... , in,.. .) put


gn(i) := |fin (x) fin (y)|,
where in = (in,... , i1). Then gn(i) 0 as n → ∞ for P almost every i Σ. By the construction of the probability measures P and Pn, n ∈ N, we have
P(Bn × Σ1 × Σ1 × ··· ) = Pn(Bn) for Bn Σn.
Since gn(i) depends only on the first n coordinates, we have




gn(i)dP(i) =

Σ
Σn


gn(i)dPn(i)


=
(i1 ,...,in )Σn
|f(in ,...,i1 )(x) f(in ,...,i1)(y)|pi1 ··· pin .

Therefore, by the Lebesgue theorem we obtain




n→∞ (i ,...,i )Σ
lim
|f(in ,...,i1)(x) f(in ,...,i1)(y)|pi1 ··· pin = 0




and inequality (3.9) completes the proof.






n

Remark 1: From uniqueness in Theorem 1 and Theorem 1.3 in [23] it follows that for any f ∈ C([0, 1]) satisfying f (0) = f (1) = 0 and μ,f = 0 we have
Ukf 0 as n .

1

n
k=1
On the other hand, the asymptotic stability in Theorem 2 raises the question whether we have then Unf 0 as n . Unfortunately, we have not been able to answer the question, neither affirmatively nor negatively.
Corollary 1: Under the assumptions of Theorem 2 we have:

    1. for every f C([0, 1]) we have the convergence of (Unf (x)) for every

x [0, 1],



    1. for every f ∈ L2(μ) we have

Unf
[0,1]
Proof. (i) For x (0, 1) we have
f dμ2 0 as n .

Unf (x)


[0,1]
f dμ

by applying Theorem 2 to δx. Since Unf (0) = f (0) and Unf (1) = f (1), we have the required convergence (not uniform since the limit may not be continuous).

[0,1]
(ii) Since μ({0, 1}) = 0, we have ∗Unf− f dμ2 0 as n →∞ for every
f C([0, 1]), by (i). Since U is a contraction of L2(μ), this implies (ii).


  1. Auxiliary results


For abbreviation we set, for ε and δ of Lemma 1,



2

2

n

n
ε := (1 − δ) 1 √4 n and γ := (1 − δ) α √4 n for n ∈ N.
Lemma 2: Let (f1,..., fN ; p1,..., pN ) be an admissible iterated function sys- tem and let α, δ, ε, M be the positive constants given in Lemma 1. Then for all
positive integers n and k 4 n we have

i
P({i Σ : fk(x) < εn}) 2n for x ∈ [εn, 1]


i
and
P({i Σ : fk(y) > 1 εn}) 2n for y [0, 1 εn].





Proof. Let α, δ, ε, M be the constants given in Lemma 1. Fix n ∈ N and
x [εn, 1], and let k 4 n . If x ε, then we have

i
(4.1) P({i Σ : fk(x) < εn}) = Pkδx([0, εn)) αγn < 2n, where the last inequality follows from the fact that δx ∈ PM,α and
P (PM ) PM ,

by Lemma 1.
Assume now that x [εn, ε). Set

1

r

1

m
E := {(i1,..., im) Σ : m ≤ ≤4 n , ∀r<mf(i ,...,i )(x) < ε and f(i ,...,i


)(x) ε}

and


F := {(i1,..., ik) Σk : m 4 nf(i1,...,im )(x) < ε}.

Then we have
Pkδx =


pi ··· pi


Pkmδf
(x)+


pi ··· pi δf


(x).



1

1

k

m

(i1 ,...,i
m)

(i1 ,...,ik
)
By the definition of E we see that δf(i1 ,...,im)(x) ∈ PM,α for (i1,... , im) ∈ E


f
and from this also Pk mδ
(i1 ,...,is )
(x) PM,α for (i1,... , im) E. On the other


n
hand, from Lemma 1 it follows that



pi1 ··· pik P
(i1,...,ik)F
Consequently, we have
4


j=1
Ax,j(ε)

γn.






P({i Σ : f (x) < ε }) n
k
i
(i1 ,...,im)E
α
pi1
··· pim
Pkmδ

f
(i1 ,...,im )
(x)([0, εn]) + γn

nγn + γn 2n for x [εn, ε).
This and condition (4.1) completes the estimate for x ∈ [εn, 1]. The estimate for y ∈ [0, 1 εn] is proved in the same way. The proof is complete.
Observe that if (f1,..., fN ; p1,..., pN ) is admissible, then there are no non- trivial closed subintervals of (0, 1) invariant by {f1,... , fN }. We are now in a position to recall the contracting result obtained by D. Malicet in [26]. This
theorem is crucial in the proof and in our setting may be stated as follows.

Theorem 3 (cf. Corollary 2.13 in [26]): If (f1,... , fN ; p1,... , pN ) is an admis- sible iterated function system, then there exists q ∈ (0, 1) such that for every x (0, 1) and P-a.e. i Σ we have a neighbourhood I of x in (0, 1) satisfying



i
(4.2) |fn(I)|≤ qn for every n ∈ N.

2
Lemma 3: Let (f1,..., fN ; p1,..., pN ) be an admissible iterated function sys- tem and let a ∈ (0, 1 ). Then there exists r ∈ N and Ω Σ with P(Ω) > 0 such that for J = [a, 1 − a] we have


i

1 q

n=1
|fn(J)|≤ r + q for i Ω,


where q is the constant given in Theorem 3.



Proof. Fix a ∈ (0, 1/2) and choose x ∈ supp μ(0, 1). From Theorem 3 we have q ∈ (0, 1), a neighbourhood I of x and Ω Σ with P(Ω) > 0 such that


Download 175,29 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish