(2.13)
ko’rinishda bo’ladi.
Teng tomonli giperbola assimptotalarining tenglamalari y=x, y=-x bo’lib, ular orasidagi burchak 900 ga teng bo’ladi. Koordinata o’qlarini –450 ga burchak, 0x o’q y=-x asimptota bilan, o’q esa y=+x asimptota bilan ustma-ust tushib, asimptotalar yangi koordinata o’qlari bo’lib qoladi. Bu yangi o’qlarda (2.13) giperbola xy=a ko’rinishda ifodalanishini ko’rsatish mumkin.
2-ta’rif. Giperbola fokuslari orasidagi masofaning haqiqiy o’qning uzunligiga nisbati giperbolaning ekssentrisiteti deyiladi va e harfi bilan belgilanadi:
Misol. Giperbolaning ekssentrisiteti , fokuslari orasidagi masofasi 26 ga tengligi ma’lum bo’lsa, uning kanonik tenglamasi tuzilsin.
Yechish. Shartga ko’ra 2c=26 va, demak giperbolaning katta o’qi a=12 bo’lgani uchun b2=c2–a2=169-144=25 bo‘ladi.
Do'stlaringiz bilan baham: |