Keram: a novel stand-alone application for correlated mutations identiication and analysis
(2006): Pfam: clans, web tools and services
.
Nucleic Acids
Research, Database Issue 34, pp. D247-D251.
6. Górecki A., Leluk J., Lesyng B. (2005): Identiication and
free energy simulations of correlated mutations in proteins.
RECOMB2005, Cambridge MA, USA, Abstracts.
7. Kass I., Horovitz A. (2002): Mapping pathways of allosteric
communication in GroEL by analysis of correlated muta-
tions. Proteins: Struct. Funct. & Genet. 48, pp. 611-617.
8. Leluk J. (1998): A new algorithm for analysis of the homol
-
ogy in protein primary structure. Computers & Chemistry
22, pp. 123-131.
9. Leluk J. (2000a): A non-statistical approach to protein mu
-
tational variability. BioSystems 56, pp. 83-93.
10. Leluk J. (2000b): Regularities in mutational variability in se
-
lected protein families and the Markovian model of amino
acid replacement. Computers & Chemistry 24, pp. 659-672.
11. Leluk J., Hanus-Lorenz B., Sikorski A.F. (2001): Application
of genetic semihomology algorithm to theoretical studies on
various protein families. Acta Biochim. Polon. 48, pp. 21-33.
12. Leluk J., Konieczny L., Roterman I. (2003): Search for
structural similarity in proteins. Bioinformatics 19(1),
pp. 117-124.
13. Neher E. (1993): How frequent are correlated changes in
families of protein sequences. Proc. Natl. Acad. Sci. USA
91, pp. 98-102.
14. Oliveira L., Pavia A.C.M., vriend G. (2002): Correlated Mu
-
tation Analyses on very Large Sequence Families. Chem-
biochem. 3(10), pp. 1010-1017.
15. Pieper U., Eswar N., Braberg H., Madhusudhan M.S., Da
-
vis F., Stuart A.C., Mirkovic N., Rossi A., Marti-Renom M.A.,
Fiser A., Webb B., Greenblatt D., Huang C., Ferrin T., Sali
A. (2004): MODBASE, a database of annotated compara
-
tive protein structure models, and associated resources.
Nucleic Acids Research 32, pp. D217-D222.
16. Pieper U., Eswar N., Davis F.P., Braberg H., Madhusud
-
han M.S., Rossi A., Marti-Renom M., Karchin R,, Webb
B.M., Eramian D., Shen M.Y., Kelly L., Melo F., Sali A.
(2006): MODBASE, a database of annotated comparative
protein structure models and associated resources. Nucleic
Acids Research 34, pp. D291-D295.
17. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin
F., Higgins D.G. (1997): The ClustalX windows interface:
lexible strategies for multiple sequence alignment aided
by quality analysis tools. Nucleic Acids Research 24,
pp. 4876-4882.
18. Thompson J.D., Higgins D.G., Gibson T.J. (1994): CLUST
-
AL W: improving the sensitivity of progressive multiple se-
quence alignment through sequence weighting, positions-
speciic gap penalties and weight matrix choice. Nucleic
Acids Research 22, pp. 4673-4680.
19. valencia A., Pazos F. (2002): Computational methods for
the prediction of protein interactions. Current Opinion in Bi
-
ology 12, pp. 368-373.
Conclusions
The Keram application has been successfully applied in the
analysis of correlated mutations. It’s intuitive interface easily
detects and shows the positions that reveal simultaneous muta-
tions. The obtained results indicate that simultaneous mutations
are not limited to contacting amino acid pairs. It is suggested that
there exist long distance clustering relationships that manifest
correlated mutational variability.
Comparing to other similar applications [Kass and Horovitz,
2002] Keram can be used ofline as a stand-alone software in
-
stalled on individual PC. The Keram’s output iles can be expolited
to carry more advanced analysis with the aid of other software
offered by our group.
The results achieved by Keram are consistent with the results
obtained with the aid of CORM [Górecki
et al.
, 2005]. These two
applications corroborate each other’s results by independent
conirmation of the accuracy and reliability. Additionally Keram
supports the results of CORM by the graphic visualization of the
detected correlated mutations.
Keram is freely accessible for the non-commercial use at:
http://www.republika.pl/bioware. Also, the source code is avail
-
able upon direct request to the authors.
Acknowledgements
These studies were supported by the PBZ-MIN-014/P05/2005
grant and by CoEBioExploratorium.
References
1. Apweiler R., Bairoch A., Wu C.H., Barker W.C., Boeckmann
B., Ferro S., Gasteiger E., Huang H., Lopez R., Magrane
M., Martin M.J., Natale D.A., O’Donovan C., Redaschi N.,
Yeh L.S. (2004): UniProt: the Universal Protein knowledge
-
base
.
Nucleic Acids Res. 32, pp. D115-119.
2. Apweiler R., Bairoch A., Wu C. H. (2004): Protein se
-
quence databases. Current Opinion in Chemical Biology 8,
pp. 76-80.
3. Bairoch A., Apweiler R., Wu C.H., Barker W.C., Boeckmann
B., Ferro S., Gasteiger E., Huang H., Lopez R., Magrane
M., Martin M.J., Natale D.A., O’Donovan C., Redaschi N.,
Yeh L.S. (2004): The Universal Protein Resource (UniProt).
Nucleic Acids Res. 33, pp. D154-159.
4. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat
T.N., Weissig H., Shindyalov I.N., Bourne P.E. (2000): The
Protein Data Bank. Nucleic Acids Research 28, pp. 235-
-242.
5. Finn R.D., Mistry J., Schuster-Böckler B., Grifiths-Jones
S., Hollich v., Lassmann T., Moxon S., Marshall M., Khanna
A., Durbin R., Eddy S.R., Sonnhammer E.L.L., Bateman A.
Ima
ge
Pr
ocessing
BIO-ALGORITHMS AND MED-SYSTEMS
JOURNAL EDITED BY JAGIELLONIAN UNIVERSITY – MEDICAL COLLEGE
Vol. 7, No. 13, 2011, pp. 77-82
Do'stlaringiz bilan baham: |