Discrete back projection using optimal interpolation formula in space Samandar Babaev, Jamshid Abduganiyev



Download 28,31 Kb.
Sana20.06.2022
Hajmi28,31 Kb.
#680629

Discrete back projection using optimal interpolation formula in space
Samandar Babaev, Jamshid Abduganiyev
Bukhara State University, 11, M.Ikbol str., Bukhara 200117, Uzbekistan,
e-mail: bssamandar@gmail.com
V.I.Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, 46, University str., Tashkent 100170, Uzbekistan,
Termis State University, Institute of Mathematics, Uzbekistan Academy of Sciences, 46, University str., Tashkent 100170, Uzbekistan,
We consider

inerpolation formula in space, where and are coefficients and nodes of interpolation formula, respectively. The first, we construct this interpolation formula, then we apply the interpolation formula to the problem of diskret back projection.
In the continious setting, the back projection is defined by
(1)
Definition 1. In the discrete setting, the continiously variable angle is replaced
by the discrete set of angles { kπ / N : 0 ≤ k ≤ N – 1} . So the value of dθ becomes π/N and the back-projection integral is replaced by the sum
(2)
Remark 1. We wish to apply formula (2) to . The grid within
which the final image is to be presented will be a rectangular array of pixels, located at a finite set of points . We will compute the values , each of which represents a color or greyscale value to be assigned to the appropriate point in the grid. To do this, we require the values of at the corresponding points . However, the X-ray scanner will give us samples of the Radon transform of , and, hence, of , only at the set of points . These points are arranged in a polar grid and generally do not match up with the points needed.
To overcome this obstacle, observe that , for a given and a given , the
number must lie in between some two consecutive integer multiples of . That is, there is some value such that
.
Hence, we will assign a value for at , based on the known values at the points and on either side. The process of assigning such values is called interpolation.
Download 28,31 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish