Дифракция волн. Уравнение одномерной волны. Продолные волны в твердых телах. Энергетические соотношения



Download 1,02 Mb.
bet2/5
Sana06.06.2022
Hajmi1,02 Mb.
#639761
1   2   3   4   5
1. Дифракция волн.
ДИФРА́КЦИЯ ВОЛН, в пер­во­на­чаль­ном уз­ком смыс­ле – оги­ба­ние вол­на­ми пре­пят­ст­вий, в со­вре­мен­ном, бо­лее ши­ро­ком – лю­бые от­кло­не­ния от за­ко­нов гео­мет­ри­че­ской оп­ти­ки при рас­про­стра­не­нии волн. При та­ком об­щем тол­ко­ва­нии Д. в. тес­но пе­ре­пле­та­ет­ся с яв­ле­ния­ми рас­про­стра­не­ния и рас­сея­ния волн в не­од­но­род­ных сре­дах. Вол­ны при ди­фрак­ции мо­гут по­па­дать в об­ласть гео­мет­рич. те­ни: оги­бать пре­пят­ст­вия, сте­лить­ся вдоль по­верх­но­стей, про­ни­кать че­рез не­боль­шие от­вер­стия в эк­ра­нах и т. п. Напр., ра­дио­вол­на мо­жет про­ник­нуть за го­ри­зонт да­же без от­ра­же­ния от ио­но­сфе­ры, а звук мо­жет быть ус­лы­шан за уг­лом до­ма.

Рис. 1. Схема дифракции волн от края экрана по Юнгу.
Пер­вая вол­но­вая трак­тов­ка Д. в. да­на для све­та Т. Юн­гом (1800), вто­рая – О. Фре­не­лем (1815–18). Кар­ти­ну вол­но­во­го по­ля, воз­ни­каю­щую за пре­пят­ст­ви­ем, Юнг счи­тал со­че­та­ни­ем соб­ст­вен­но ди­фрак­ции и ин­тер­фе­рен­ции волн. Для объ­яс­не­ния Д. в., кро­ме обыч­ных за­ко­нов рас­про­стра­не­ния волн в на­прав­ле­нии лу­чей, он ввёл прин­цип по­пе­реч­ной пе­ре­да­чи ам­пли­ту­ды ко­ле­ба­ний не­по­сред­ст­вен­но вдоль вол­но­вых фрон­тов (по­пе­реч­ной диф­фу­зии), ука­зав, что ско­рость этой пе­ре­да­чи про­пор­цио­наль­на дли­не вол­ны и пе­ре­па­ду ам­пли­туд на фрон­те. Со­глас­но Юн­гу, ди­фра­ги­ро­ван­ная вол­на воз­ни­ка­ет ло­каль­но в не­ко­то­рой ок­ре­ст­но­сти гра­ни­цы те­ни за кра­ем пре­пят­ст­вия. Ана­ло­гич­ная ди­фра­ги­ро­ван­ная вол­на об­ра­зу­ет­ся и в ос­ве­щён­ной об­лас­ти, так что в це­лом фор­ми­ру­ет­ся по­ле ци­лин­д­рич. вол­ны, как бы ис­пус­кае­мой кра­ем по­верх­но­сти пре­пят­ст­вия SS (рис. 1). Ин­тер­фе­рен­ция ди­фра­ги­ро­ван­ной вол­ны с не за­сло­нён­ной пре­пят­ст­ви­ем ча­стью па­даю­щей вол­ны объ­яс­ня­ет по­яв­ле­ние на эк­ра­не B′B′ ин­тер­фе­рен­ци­он­ных по­лос, рас­по­ло­жен­ных вы­ше гра­ни­цы те­ни BB′BB′, и от­сут­ст­вие их в ниж­ней час­ти.

Рис. 2. Схема дифракции волн от края экрана по Френелю.

Рис. 3. Построение дифракционной картины за отверстием по Френелю (разбиение на зоны Френеля).
О. Фре­нель от­ка­зал­ся от ло­каль­но­го юн­гов­ско­го под­хо­да и пред­ло­жил свой инте­граль­ный ме­тод, опи­раю­щий­ся на сфор­му­ли­ро­ван­ный ра­нее (1690) прин­цип Гюй­ген­са (см. Гюй­ген­са – Фре­не­ля прин­цип). Со­глас­но Фре­не­лю, ди­фрак­ци­он­ное по­ле мо­жет быть пред­став­ле­но как ре­зуль­тат ин­тер­фе­рен­ции по­лей фик­тив­ных вто­рич­ных ис­точ­ни­ков, рас­пре­де­лён­ных по всей не за­кры­той пре­пят­ст­ви­ем час­ти фрон­та па­даю­щей вол­ны (рис. 2) и имею­щих ам­пли­ту­ду и фа­зу, про­пор­цио­наль­ные та­ко­вым у этой вол­ны. Фре­нель раз­бил по­верх­ность, за­ня­тую вто­рич­ны­ми ис­точ­ни­ка­ми, на по­лувол­но­вые зо­ны (т. н. Фре­не­ля зо­ны, рис. 3). Ха­рак­тер Д. в. за­ви­сит от то­го, сколь­ко зон ук­ла­ды­ва­ет­ся в от­вер­стии, или от зна­че­ния фре­не­лев­ско­го (вол­но­во­го) па­ра­мет­ра pp, рав­но­го от­но­ше­нию раз­ме­ра пер­вой зо­ны Фре­не­ля к ра­диу­су aa от­вер­стия, p=λz−−√/ap=λz/a (zz – ко­ор­ди­на­та точ­ки на­блю­де­ния, λλ – дли­на вол­ны). В за­ви­си­мо­сти от ве­ли­чи­ны pp раз­ли­ча­ют сле­дую­щие об­лас­ти Д. в.: гео­мет­ро­оп­ти­че­скую, или про­жек­тор­ную, об­ласть, p≪1p≪1; об­ласть ди­фрак­ции Фре­не­ля, pp по­ряд­ка 1; об­ласть ди­фрак­ции Фра­ун­го­фе­ра, p≫1p≫1. При фик­си­ро­ван­ных aa и λλ эти об­лас­ти рас­по­ло­же­ны по­сле­до­ва­тель­но, по ме­ре уда­ле­ния точ­ки на­блю­де­ния от от­вер­стия (т. е. с уве­ли­че­ни­ем zz). В пер­вой, при­ле­гаю­щей к от­вер­стию об­лас­ти (z≪a2/λ)(z≪a2/λ) по­пе­реч­ное рас­пре­де­ле­ние ам­пли­ту­ды по­вто­ря­ет рас­пре­де­ле­ние ам­пли­ту­ды на са­мом от­вер­стии и от­ве­ча­ет при­бли­же­нию гео­мет­рич. оп­ти­ки. Во вто­рой зо­не (zz по­ряд­ка a2/λa2/λ) по­пе­реч­ное рас­пре­де­ле­ние ам­пли­ту­ды су­ще­ст­вен­но ис­ка­жа­ет­ся. На­чи­ная с этих рас­стоя­ний, вол­но­вой пу­чок от­но­си­тель­но бы­ст­ро рас­ши­ря­ет­ся из-за ди­фрак­ции. В треть­ей, уда­лён­ной об­лас­ти (z≫a2/λ)(z≫a2/λ) ди­фрак­ци­он­ное по­ле пред­став­ля­ет со­бой рас­хо­дя­щую­ся сфе­рич. вол­ну с ло­каль­но пло­ской струк­ту­рой, об­ла­даю­щую оп­ре­де­лён­ной на­прав­лен­но­стью. Т. о., наи­бо­лее от­чёт­ли­во Д. в. про­яв­ля­ет­ся во фре­не­лев­ской об­лас­ти, т. е. с рас­стоя­ний zz по­ряд­ка a2/λa2/λ. Имен­но по­это­му Д. в. на во­де (λλ по­ряд­ка 1 м) или диф­рак­ция зву­ка в воз­ду­хе (λλ по­ряд­ка 0,1 м) мо­жет на­блю­дать­ся прак­ти­че­ски все­гда, ди­фрак­ция све­та (λλ по­ряд­ка 10–3–10–4 м) тре­бу­ет вы­пол­не­ния осо­бых ус­ло­вий (иголь­ча­тое от­вер­стие, ост­рый край брит­вы и т. п.), а для ди­фрак­ции рент­ге­нов­ских лу­чей (λλ по­ряд­ка 10–6–10–8 м) ис­поль­зу­ют кри­стал­лич. ре­шёт­ки.
Позд­нее бы­ло по­ка­за­но, что в рав­ных ус­ло­ви­ях оба под­хо­да (и Юн­га, и Фре­не­ля) при­во­дят к оди­на­ко­вым ре­зуль­та­там, од­на­ко при кон­крет­ных рас­смот­ре­ни­ях од­но­му из них мо­жет быть от­да­но ме­то­дич. пред­поч­те­ние. Сле­ду­ет под­черк­нуть, что ши­ро­кое раз­ви­тие иду­ще­го от Юн­га ме­то­да по­пе­реч­ной диф­фу­зии свя­за­но с ос­вое­ни­ем всё бо­лее ко­рот­ко­вол­но­вых элек­тро­маг­нит­ных диа­па­зо­нов (с по­яв­ле­ни­ем ма­зе­ров, ла­зе­ров и т. п.) и не­об­хо­ди­мо­стью со­от­вет­ст­вую­ще­го «элек­тро­ди­на­ми­че­ско­го обес­пе­че­ния» (см. Ква­зи­оп­ти­ка). Бо­лее то­го, этот ме­тод ока­зал­ся аде­к­ват­ным не­ко­то­рым не­ли­ней­ным ди­фрак­ци­он­ным за­да­чам ти­па са­мо­фо­ку­си­ров­ки и са­мо­ка­на­ли­ро­ва­ния элек­тро­маг­нит­ных волн.
Яв­ле­ние ди­фрак­ции име­ет ме­сто и в мик­ро­ми­ре (см. Ди­фрак­ция час­тиц), по­сколь­ку объ­ек­там кван­то­вой ме­ха­ни­ки свой­ст­вен­но вол­но­вое по­ве­де­ние.

Download 1,02 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish