> with(plots): T0:=1; a:=1;L:=12;
u(t,x):=1/2*T0+sum(2*(-1)An*cos(Pi*(2*n+1)/L*x)*exp(-
PiA2*(2*n+1)A2/LA2*aA2*t)*T0/Pi/(2*n+1),n=0..1000):
T0 := l a := l
L := l2
Olingan natijalami ikki o’lchamli animasiyali grafik ko’rinishda tasvirlaymiz: > animate(plot,[u(t,x),x=0..12, y=-0.1..1.1], t=0.0001..30, frames=30,thickness=3);
t -. Iй-З
bir jinsli tenglamani ikkinchi tipli chegaraviy va quyidagi boshlang’ich shartlar bilan yeching:
u(0, x )=f( x),
bu yerda f( x) funksiya quyidagi ko’rinishda berilgan: > a:=1;L:=12;T0:=1;
f(x):=x->piecewise(x
a := 1 L := 12 TO := 1
„ л • . ( L 2 TOx 2 TO (L - x) Л
f(x) := x ^ piecewise! x < — ———, x < L, — I
> plot(f(x),0..12,-0.1..1.1, numpoints=400,color=blue,thickness=3);
> restart;
f
f(£ ) := £ ^ piecewise! £ <
L 2 TO £ 2 L
, £ < L,
2 TO (L - £ )
L
(xi):=xi->piecewise(xi
Yechish uchun yuqorida olingan formuladan (2- chegaraviy shardan) foydalanamiz:
u(t,x):=simplify(sum(2/L*cos(Pi*n/L*x)*exp(-
PiA2*nA2/LA2*aA2*t)*(int(2*T0*xi/L*cos(Pi*n/L*xi),xi=
.L/2)+int(2*T0*(L-xi)/L*cos(Pi*n/L*xi),xi=L/2..L)),n=1..infinity));
C2 0 := TO
\
u( t, x )
I
П = 1
(к nx 4 cos
L
e
L
2
, (к n
T0 \ -1 + 2 cos! —
(-1)n
к2 n2
( к n ^
cos! —^— J = 0 n --> 2(n — 1)
к n
cosl J = (—1)n n --> 2 n
n --> 4 n + 2
Tenglamaning yechimi: > u(t,x):=C2_0/2-sum(16*cos(Pi*(4*n+2)/L*x)*exp(- PiA2*(4*n+2)A2/(LA2)*aA2*t)*T0/(PiA2)/((4*n+2)A2),n =0..infinity);
2
W
u( t, x ) :=
(к (4 n +2)x 16 cos! ——-—— | e
L
2
TO
к2 ( 4 n + 2 )2
2 2 n2 (4 n + 2)2 a2 t
> with(plots): a:=1;L:=12;T0:=1;
u(t,x):=1/2*T0-sum(16*cos(Pi*(4*n+2)/L*x)*exp(-
PiA2*(4*n+2)A2/LA2*aA2*t)*T0/PiA2/(4*n+2)A2,n=0..222):
a := 1 L := 12 TO := 1
Olingan natijalami ikki o’lchamli animasiyali grafik ko’rinishda tasvirlaymiz:
-
1
dt
u( t, x ) = a2
fd2
Misol. > restart;
bir jinsli tenglamani ikkinchi tipli chegaraviy va quyidagi boshlang’ich shartlar bilan yeching:
u(0, x )=f( x),
bu yerda f( x) funksiya quyidagi ko’rinishda berilgan: > T0:=1; a:=1;L:=12; f(x):=x->piecewise(x
TO := 1 a := 1
L := 12
f(x) :=x ^ piecewisi(x < L, TO)
> plot(f(x),0..13,-0.1..1.1, numpoints=400,color=blue,thickness=3);
> restart;
f(x):=x->piecewise(x
f(x) :=x ^piecewisex < L, TO)
Yechish uchun yuqorida olingan formuladan (3- chegaraviy shardan) foydalanamiz:
> u(t,x):=sum(2/L*cos(1/2*Pi*(1+2*n)/L*x)*exp(-
1
u( t, x ) :=
Z
у П = 1 V
( n (1 + 2 n ) x
4co{ 2jL le
( n2(1 + 2 n )2 a2 t ^
4 L2
w
cos(n n ) (-TO + T2 )
n (1 + 2 n )
+ T2
/4*PiA2*(1+2*n)A2/LA2*aA2*t)*int((T0-T2)*cos(1/2*Pi*(1+2*n)/L*xi),xi = 0 .. L),n = 1 .. infinity)+T2;
cos(n n ) = (-1 )n
Tenglamani yechimi:
> u(t,x):=sum(4*cos(1/2*Pi*(1+2*n)/L*x)*exp(-
1/4*PiA2*(1+2*n)A2/LA2*aA2*t)*(-1)An*(T0-
T2)/Pi/(1+2*n),n=0..infinity)+T2;
> with(plots):
T0:=1; a:=1.5;L:=12;T2:=T0/4;
u(t,x):=sum(4*cos(1/2*Pi*(1+2*n)/L*x)*exp(-
1/4*PiA2*(1+2*n)A2/LA2*aA2*t)*(-1)An*(T0-T2)/Pi/(1+2*n),n=0..1000)+T2:
Warning, the name changecoords has been redefined
TO := 1 a := 1.5
L := 12
T
1
4
u( t, x ) :=
Z
. n (1+2 n) x 4coS 2L 1 e
. n2(1 + 2 n )2 a2 t ^
4 L2
w
(-1)n (TO - T2)
V n = 0 V
n (1 + 2 n )
2 T2
2 : =
Olingan natijalami ikki o’lchamli animasiyali grafik ko’rinishda tasvirlaymiz: > animate(plot,[u(t,x),x=0..12, y=-0.1..1.1], t=0.0001..30, frames=30,thickness=3);
1.8
1.8
1.1
1.2
Bob. Bir jinsli silindrda issiqlik o’tkazuvchanlik tenglamasi
3.1-§. Fazoda issiqlik o’tkazuvchanlik tenglamasini chiqarilishi
Uch o'lchovli fazoda biror issiqlik o’tkazuvchi va koordinatalari (x,y, z) bo’lgan ixtiyoriy M nuqtaning temperaturasi t vakt momentida u(x, y, z, t) funksiya
ko’rinishida beriluvchi jismni qaraymiz [1,2,4]. Ma’lumki, issiqlik potoki vektori
—^
uchun W quyidagi Fur’ye qonuni deb ataluvchi formula o’rinlidir.
——
W = -k grad u
Bu yerda k (x, y, z) - issiqlik o’tkazuvchanlik koeffitsiyenti.
Agar jism E3fazoda berilgan bo’lsa Q soxaning chegarasi ъ bo’ladi. Shunda jismning issiqlik miqdori t vaqt momentida quyidagi formula bilan hisoblanadi:
Q2 -Q1 = JJJc(M)p(M)u(M,t2)dTM - JJJc(M)p(M)u(M,t1)drM =
Q Q
=(t2 -11 )JJJc(M)P(M)ut(M, t3 )dTM
Q
[t\; t2 ] (Q(t\) = Q, Q(h) = Q) vaqt oralig’ini qaraymiz. Shunda
Q2 -Q1 = JJJc(M)p(M)u(M,12^M —JJJc(m)p(M)u(mt1)dTm
Q Q
bo’ladi. Issiqlik miqdorining o’zgarishi tashqaridan issiqlik oqib kelish natijasida va ba’zi ichki manbaning (stoklarning) harakati tufayli ro’y beradi:
2 — — ‘"2
Q2 - Q =J-JJ (W , n )dv dt + Jl JJJ F(M, t)dT dt
t
t1 -
ъ
1 — Q
B
2 —
Q2 - Q1 =-J JJJ(divW)dT
Q
dt + (tx -t2)JJJ F(M, t4 )dT
Q
irinchi integral uchun Ostogradskiy-Gauss formulasini qo’llaymiz va o’rta qiymat haqidagi formulani esa ikkinchi integral uchun qo’llaymiz:
Bu yerda 14 e t; 12 ] ga qarashli.
Lagranj formulasidan quyidagi silliq (buni faraz qilamiz) u funksiya uchun foydalanamiz:
u(M, 12 ) - u(M, tj = ut (M, 13 )(t2 -11), t3 e t; 12 ]
Bundan quyidagini hosil qilamiz:
Q
Q
Q
2 - Q1 = HIc(M)p(M)u(M, t2)dTM -j]Jc(M)p(M)u(M, Wtm =
= (t2 - tx){И c(M)p(M)ut (M, t3 )dzM
Q
Demak,
t2 —
(t2 - p )j||c(M)p(M)ut (M,t3 )drM = -{ {И(divW)drM dt + (p - t2 )jjjF(M,t4 )dr.
Q tj L Q J Q
E
c(M1)P(M1)ut (MV t3)VQ (t 2 - t1) = -divW
VQ (t2 - t1) + F(M3,14)VQ(t2 - t1),
M =M
ndi hamma integral uchun umumlashtirilgan o’rat qiymat formulani qo’llaymiz:
Bunda t5 e[tj;t2JMt,M2 eQ, Vq-Q ning hajmi bo’ladi. VQ(t2tj) ga qisqartirib, Q
dan olingan biror bir M1, M 2 nuqtalar uchun quyidagini hosil qilamiz:
—^
c(M 1 )P(M 1 )ut (M 1, t3 ) VQ (t2 - t1) = -div W t=t3 + F(M3,14 ) .
M =M 2
Endi biror M0 nuqtagacha Q ni qissak, [t1, 12 ] kesma ham t0 nuqtagacha qisiladi. Bundan ko’rinadiki M1,M2 nuqtalar M0 ga o’tadi, t3,t4,t5 lar esa t0 ga. Bundan limitga o’tganda quyidagi hosil bo’ladi:
——
c(M0)P(M0)ut (M0,10) = -div W t=t0 + F(M0,10)
M =M 0
——
W uchun Fur’ye qonunini qo’llab quyidagini hosil qilamiz:
.. — /7 7 4 d , du d , du d , du
div W = div(-kgradu) = - — k — - — k — - — k — ^
dx dx dy dy dz dz
d Pz d О/ d О/
^ c(M 0)p(M 0)ut (M 0, t0) = - k — + - k — +- k — + F (M 0, t0)
ox ox dy py dz dz
M0, t0 nuqtalarni ixtiyoriy olganimiz sababli, hosil qilingan formulani butun [t1.t 2 ] va Q ni soha uchun yoyish mumkin:
o
c( x, y, z )p( x, y, z)ut (x, y, z, t)
(k(x, y, z)ux (x, y, z, t)) +
ox
(k(^ y, z)uy (^ y, z, t)) +
Oy y
+ — (k(x, y, z)uz (x, y, z, t)) + F(x, y, z, t) oz
B
ut = a 2(uxx + uyy + uzz ) + f (x, y, z, t X
a
k
cp
cP
(3.1.1)
u ifoda fazoda issiqlik o’tkazuvchanlik tenglamasi deb nomlanadi. c, p, k larni konstanta da deb olib, quyidagi tenglik hosil qilamiz:
Agar u, f faqat x va t o’zgaruvchilari bilan bog’liq bo’lsa, u holda bu tenglik quyidagicha yoziladi:
ut = a 2uxx + f (x, t) (3.1.2)
Fizik interpretasiyada bir jinsli yupqa sterjinda issiqlik o’tkazuvchanlik (yoyilish) tenglamasidir. (3.1.2) tenglamani biz keyinchalik issiqlik o’tkazuvchi tenglamasi deb yuritamiz.
Analogik fikrlashni boshqa bir fizik prosesslar uchun ham o’tkazishimiz mumkin, masalan diffuziya uchun. Agar u( x. y.z.t)- fazoda gazning konsentrasiyasi bo’lsa, u holda diffuziya tenglamasi quyidagicha bo’ladi:
cut = div( Dgradu) + F (x, y, z, t)
D - diffuziya koeffitsiy enti F - biror bir funksiya
§
Bir jinsli silindrda issiqlik tarqalish jarayonini qaraymiz [6-8]. Buning uchun quyidagi:
(o \\
\ 1 Ifr u( t’ r )
o
Ot
u( t, r ) =a
(o2
vv
or.2u( '■r)
+ -
r
. Maple paketi orqali bir jinsli silindrda issiqlik o’tkazuvchanlik tenglamasini Fur’ye usuli (o’zgaruvchilarni ajratish usuli) yordamida yechish
bir jinsli tenglamani
u(0, r ) =F( r )
Boshlang’ich shart va quyidagi bir jinsli chegaraviy shart bilan yeching:
u( t, r0) = 0 .
> restart;
Bir jinsli tenglama va uning yechimini o’zgaruvchilarni almashtirish usuli bilan
s
yechamiz:
> PDE:=diff(u(t,r),t)=aA2*(diff(u(t,r),r,r)+(1/r)*diff(u(t,r),r)); struc:=pdsolve(PDE,HINT=T(t)*R(r));
O ~
PDE := — u( t, r ) = a2 ot
f
(O2 vV
д 2u( t Г )
or2
o
u( t, r )
r
d
dd4 r ) =
R(r ) _ci dr
R( r )
(u(t, r) = T(t) R(r)) &where
> dsolve(diff(T(t),t) = _c[1]*T(t));
dsolve(diff(R(r),'$'(r,2)) = R(r)/aA2*_c[1]-diff(R(r),r)/r);
(
T( t) = C1 e
a
(t)
d
r dt
T( t) = _ci T( t)
R( r) = _C1 BesselJ
0
-_C r
a
+ C2 BesselY
0
-_C r
a
Quyidagicha almashtirish olamiz:
c
22
l
= =- X2a
truc :=
>
, ,2 2 4 (-X a t)
dsolve(diff(T(t),t) = -lambdaA2*aA2*T(t)); dsolve(diff(R(r),'$'(r,2)) = -lambdaA2*R(r)-diff(R(r),r)/r);
T( t) = C1 e(
R(r) = _C1 BesselJ0, X r) + _C2BesselXO, X r)
Ikkinchi tenglamaning yechimi
R(r) = _C1 BesselJ 0, X r) + _C2 BesselY0, X r) silindrning markazida regulyarlik shartini qanoatlantirishi shart. BesselJ funksiyasi nolda regulyar:
> BesselJ(0,lambda*r)=series(BesselJ(0,lambda*r), r=0,4);
X2
B
BesselY funksiya nolda singulyar:
> BesselY(0,lambda*r)=series(BesselY(0, lambda*r), r=0,4);
BesselY(0, X r) =
2 i ln(y]+ln( r)
v
+ 2y * J
+
iv
2
+ ln( r) *
X2
(2 - 2 у) X2
+ “ —
4 * J
r2 + O( r4)
esselJ0, X r) = l - — r2 + O(r4)
Natija, radial tenglamaning umumiy yechimida quyidagini qo’yishga olib keladi:
_C2 = 0
Shuning uchun radial tenglamaning yechimi quyidagi ko’rinishga ega bo’ladi:
R( r) = BesselJ 0, X r)
(bunda o’zgarmas umumiy yechimda hisobga olinadi).
Silindming (г = r0) uchi chegaraviy shartni hisobga olib (nol temperatura):
R( r0) =0
Bu shartni quyidagi funksiya qanoatlantiradi:
> R[n](r):=BesselJ(0,lambda[n]*r);
Rn(r) := BesselJ(0, Xn r)
Bu yerda \ - Bessel funksiyasining ри nollarini tanlab olish orqali aniqlanadigan
o’garmaslarni ajratishni o’zgarmas qiymatidir:
> BesselJ(0,mu[n])=0; mu:=BesselJZeros :mu(0,n);
BesselJ(0, ри ) = 0
B
bunda:
> lambda[n]:=mu(0,n)/r0;
X :
n
BesselJZeros(0, n )
r0
esselJZero(S0, n)
Shuning uchun radial tenglamani yechimi quyidagi ko’rinishga ega bo’ladi: > R[n](r):=BesselJ(0,r*lambda[n]);
R
BesselJZeros( 0, n ) r
r0
„( r ) := BesselJl 0,
Vaqt tenglamasi uchun quyidagiga ega bo’lamiz: > T[n](t):= C[n]*exp(-lambda[n]A2*aA2*t);
T
9 9 л
BesselJZeros0, n )2 a2 t r02 ,
> u[n](t,r):=T[n](t)*R[n](r);
/ 2 2 Л
BesselJZerosQ, n )2 a2 t
u (t, r) := C ev
nn
r0
7 BesselJl 0,
BesselJZeros(0, n) r
r0
Natijada tenglamaning umumiy yechimi quyidagi ko’rinishga ega bo’ladi: > u(t,r):=Sum(u[n](t,r), n=1..infinity);
/ 9 9 \
BesselJZerosQ, n)2 a2 t
to
u( t, r) := E Cn
n = 1
ev
r0
7 BesselJl 0,
BesselJZeros(0, n) r
r0
(t) := C e
Quyidagicha almashtirish olamiz:
r
r --> p = ■ , r = p r0
Интервал изменения переменной p - o’zgaruvchining o’zgarish intervali [0, 1] birlik kesma.
> u(t,rho):=subs(r=rho*r0,u(t,r));
n
BesselJ(0, BesselJZeros(0, n) p)
u(1, p) := Z Cn e
9 9 \
BesselJZeroSO, n )2 a2 t
rO2
= 1
Cn koeffisiyentni aniqlash boshlang’ich shartdan foydalanamiz:
u(0, r ) = F( r )
> simplify(subs(t=0,u(t,rho))=F(rho*r0));
Z C BesselJ0, BesselJZero(s0, n) p) = F( p rO)
П = 1
Oxirgi munosabatlar F(p rO) funksiyalarni Bessel funksiyasi bo’yicha qatorga yoyishni bildiradi.
Shuning uchun yoyilmaning koeffisiyentlari quyidagiga teng:
>
C
C :
n
2
BesselJ( 1, BesselJZeros(0, n ))2
p BesselJ(0, BesselJZeros(0, n) p) F(p rO) dp
0
[n]:=2/BesselJ(1,BesselJZeros(0,n))A2*int(rho*BesselJ(0,BesselJZeros(0,n)* rho)*F(rho*r0),rho = 0 .. 1);
Natijada quyidagiga ega bo’lamiz:
> u(t,rho) := Sum(C[n]*exp(-
B
2 2 Л
' BesselJZero^0, n) a t
u( t, p) := z
n = 1
2 ev
rO
BesselJ(0, BesselJZeros(0, n ) p )
BesselJ( 1, BesselJZeros(0, n ))2
esselJZeros(0,n)A2/r0A2*aA2*t)*BesselJ(0,BesselJZeros(0,n)*rho),n = 1 .. infinity);
p BesselJ(0, BesselJZeros(0, n ) p) F( p rO ) dp
0
§. Tenglamani yechishga doir misollar
1
d_
dt
u( t, r ) = a1
f
fd2
vv
я 2u( ^ r )
dr
л i (a.u(t,r)
+ -
r
- Misol. > restart;
bir jinsli tenglamani bir jinsli chegaraviy shartlar va quyidagi boshlang’ich shartlar bilan yeching:
u(0, r ) = F( r )
bu yerda F( r) funksiya quyidagi ko’rinishda berilgan [2,5]: > r0:=1; H:=1;a:=0.25;
r0 := 1
H := 1
a := 0.25
F( P) := -P2 + 1
> addcoords(M_cylindrical,[z,rho,theta],[rho*cos(theta),rho*sin(theta),z]); plot3d(F (rho),rho=0..r0,theta=0..2* Pi,coords=M_cylindrical,axes=BOXED,lig htmodel=light3,numpoints=1000,orientation=[45,65],shading=ZHUE,style=P
A
1 1
TCHCONTOUR);
Yoyilmaning koeffisiyentlari:
>
C[n]:=simplify(2/BesselJ(1,BesselJZeros(0,n))A2*int(rho*BesselJ(0,BesselJZer os(0,n)*rho)*F(rho*r0),rho = 0 .. 1));
C
4 (-BesselJZero(s0, n) Bessel^0, BesselJZero(s0, n)) + 2 BesselJd, BesselJZero(s0, BesselJZero(s0, n)3 BesselJ 1, BesselJZero(s0, n ))2
:
n
Yechish uchun yuqorida olingan formuladan foydalanamiz:
> u(t,rho) := Sum(C[n]*exp(-
BesselJZeros(0,n)A2/r0A2*aA2*t)*BesselJ(0,BesselJZeros(0,n)*rho),n = 1 .. 12);
1
f (-0.0625 BesselJZeros0, n )21 \ ^ . A
8 e BesselJ(0, BesselJZeros( 0, n ) p )
v BesselJZeros( 0, n )3 BesselJ( 1, BesselJZeros( 0, n )) y
2
u(t, p) := 2
n = 1
Olingan yechimni animasiyali grafik ko’rinishida tasvirlaymiz:
> with(plots):
addcoords(M_cylindrical,[z,rho,theta],[rho*cos(theta),rho*sin(theta),z]); animate(plot3d,[u(t,rho),rho=0..r0,theta=0..2*Pi,coords=M_cylindrical], t=0..10, frames=40,
axes=BOXED,lightmodel=light1,numpoints=1000,orientation=[45,
65],shading=ZHUE,style=PATCHCONTOUR);
Warning, coordinates already exists, system redefined.
b
2 - Misol. > restart;
r
d_
dt
u( t, r ) = a2
^d2
\\
dr2
u( t, r )
+ -
d
11 dr u( t,r)
r
ir jinsli tenglamani bir jinsli chegaraviy shartlar va quyidagi boshlang’ich shartlar bilan yeching
u(0, r ) = F( r )
bu yerda F(r) funksiya quyidagi ko’rinishda berilgan: > r0:=1; H:=1;a:=0.25;
F(rho):=-(rho * r0)+H;
r0 := 1
H := 1
a := 0.25
F( P) := -P + 1
> addcoords(M_cylindrical,[z,rho,theta],[rho*cos(theta),rho*sin(theta),z]); plot3d(F (rho),rho=0..r0,theta=0..2* Pi,coords=M_cylindrical,axes=BOXED,lig htmodel=light3,numpoints=1000,orientation=[45,65],shading=ZHUE,style=P
A TCHCONTOUR);
Yoyilmaning koeffisiyentlari:
>
C[n]:=simplify(2/BesselJ(1,BesselJZeros(0,n))A2*int(rho*BesselJ(0,BesselJZer os(0,n)*rho)*F(rho*r0),rho = 0 .. 1));
Cn := n (-BesselJ(0, BesselJZeros(0, n )) StruveH(1, BesselJZeros(0, n ))
+ BesselJ(1, BesselJZeros(0, n )) StruveH(0, BesselJZeros(0, n )))/(
BesselJZeros(0, n )2 BesselJ(1, BesselJZeros(0, n ))2)
Yechish uchun yuqorida olingan formuladan foydalanamiz:
> u(t,rho):=Sum(C[n]*exp(-
BesselJZeros(0,n)A2/r0A2*aA2*t)*BesselJ(0,BesselJZeros(0,n)*rho),n =1..24);
2
9
(-0.0625BesselJZeron)2 t)
n StruveH( 0, BesselJZeros( 0, n )) e BesselJ( 0, BesselJZ
BesselJZeros(0, n )2 BesselJ( 1, BesselJZeros( 0, n ))
4
u( t, p) := X
n = 1
Olingan yechimni animasiyali grafik ko’rinishida tasvirlaymiz:
> with(plots):
addcoords(M_cylindrical,[z,rho,theta],[rho*cos(theta),rho*sin(theta),z]);
animate(plot3d,[u(t,rho),rho=0..r0,theta=0..2*Pi,coords=M_cylindrical],
t=0..10,
frames=20,axes=BOXED,lightmodel=light1,numpoints=1000,orientation=[45,
65],shading=ZHUE,style=PATCHCONTOUR);
W arning, coordinates already exists, system redefined.
Xulosa
Turmush hayotimizda muhim ahamiyatga ega bo’lgan isssiqlikning to’g’ri chiziq, tekislik va fazoda tarqalish jarayoni, shuningdek diffuziya hodisasi parabolik tipli tenglamalar orqali o’rganiladi. Bu tenglamalar uchun ham to’lqin tenglamasi kabi chegaraviy va Koshi masalari tenglama yechimini bir qiymatli ajratib olishga imkon yaratadi va ular belgilangan rejimga asosan tanlab olinadi.
Biz bu malakaviy bitiruv ishida chekli uzunlikdagi sterjenda qo’yilgan aralash masalalarning limitik holi sifatida aniqlagan chegaralanmagan uzunlikdagi sterjenda issiqlik tarqalish tenglamasiga qo’yilgan Koshi masalasining yechimi xuddi giperbolik tenglamalar uchun chegaraviy masalalrni yechishda qo’llanilgan o’zgaruvchilarni almashtirish yoki Fur’e usuli yordamida topilib, yechim Puasson integrali deb ataluvchi integral shaklda tasvirlanishini o’rgandik.
Bitiruv malakaviy ishida, Maple matematik paketidan foydalanib, yarim chegaralangan sohada issiqlik o'tkazuvchanlik tenglamasini va bir jinsli silindrda issiqlik o’tkazuvchanlik tenglamasini Fur’ye usuli (o’zgaruvchilarni ajratish usuli) yordamida yechish va tenglamani yechishga doir misollar qaralgan, shuningdek, yechimning ikki o’lchovli animasiyali grafigi tasvirlangan.
Foydalanilgan adabiyotlar ro’yxati.
Salohiddinov M. S. Matematik fizika tenglamalari, T. “Ozbekiston”, 2002, 448 b.
Salohiddinov M. S., Islomov B. I. Matematik fizika tenglamalari fanidan masalalar to’plami, T. “Mumtoz so’z” , 2010, 372 b.
Zokirov O. S. Xususiy hosilali differensial tenglamalar.T. Universitet”2012, 260 b.
Begmatov A. H. Ochilov Z. H. Matematik fizika tenglamalari O’quv- uslubiy majmua Samarqand - 2013, 552 b.
Бицадзе А. В. Калинеченко Д. Ф. Сборник задач по уравнениям математической физики. М. 1977.312 С.
Аладъев В. З. Системы компютерной математики: MAPLE : искусство программирования.// М. Лаборатория базовых знаний, 2006,792 с.
Аладъев В. З. Бойко В. К, Ровба Е. А. Программирование и разработка приложений в Maple .// Городно, Таллин, 2007, 458 с.
Г оворухин В. Цибулин В. Компютер в математическом исследовании. Учебный курс. Питер, 2001, 624 с.
Internet va ZiyoNet saytlari
www. lib. homelinex. org/math
www. eknigu. com/lib/mathematics/
www. ekingu. com/info/M mathematics/MC
www. allmath. ru/highermath/
Do'stlaringiz bilan baham: |