к = 0
eval(subs(x=0,U_x [n](t,x)*k=0)); eval(subs(x=L,U[n](t,x)* k=0));
> simplify((C1[n]*sin(1/2*Pi*(1+2*n))+C2[n]*cos(1/2*Pi*(1+2*n)))*exp(- 1/4*PiA2*(1+2*n)A2/LA2*aA2*t)*k = 0) assuming n::integer;
2 2 2,
n
Cl (-1)n ev
4 L
к = 0
(1 + 2 n) a t
Bundan:
Cl = 0
n
> U[n](t,x):=C2[n]*cos(lambda[n]*x)*exp(-lambda[n]A2*aA2*t);
f л2(1 + 2 n )2 a2 t1
4 L2
U(^ x) := C2„H n (1 + \ n) X 1 e
f n2(1 + 2 и )2 a2 t1
4 L2
U
U(t,x) := X C2n co
n = 1
n (1 + 2 n ) x
2L
e
mumiy yechim quyidagi ko’rinishga ega: > U(t,x):=sum(U[n](t,x), n=1..infinity);
>
X C2 co
n
f n (1 + 2 n ) x
n = 1
t
2 L
= F( x )
eval(subs(t=0,U(t,x)=F(x)));
Shuning uchun, C2n koeffisiyentlar Fur’ye almashtirishi formulalari orqali topiladi:
>
C2
n
F( £ )co
ж (1 + 2 n) £
2L
d£
C2[n]:=(2/L)*int(F(xi)*cos(1/2*Pi*(1+2*n)/L*xi), xi=0..L);
"o
Umumiy yechimni yozamiz.
> h1:=0;
sigma:= -h1*h2*(-T2+T1)/(k*h2+k*h1+h2*L*h1);
kappa:= limit((k*h2*T2+k*h1*T1+h2*L*h1*T1)/(k*h2+k*h1+h2*L*h1), h2=infinity);
F(xi):=f(xi)-kappa-sigma*xi;
U(t,x) := sum(C2[n]*cos(1/2*Pi*(1+2*n)/L*x)*exp(- 1/4*PiA2*(1+2*n)A2/LA2*aA2*t),n =0..infinity);
hi := 0 a := 0 к := T2
e
F
U( t, x) :=
r
2 2 2 ^ ж (1 + 2 n) a t
\
TO
I
n = 0
2 co
ж (1 + 2 n ) x
2L
4 L
2
L
L
(f( £ ) - T2 )co
ж (1 + 2 n ) £
2L
d£
У
( £) := f( £) - T2
u( t, x) :=
|
V
(
|
|
f 2 2 2 , ^
ж (1 + 2 n) a t
|
|
2 coS
|
'ж (1 + 2 n ) x Л
|
l 4 l2 J
|
TO
I
n = 0
|
v 2 L J C
|
|
L
|
V
+ T2
rL
(f( £ ) - T2 )co
ЛЛ
ж (1 + 2 n ) £
2L
d£
JJ
Tenglamani yechishga doir misollar [2,5].
- Misol.
>
d_
dt
u( t, x )
= a
2
f—
Vdx2
\
u( t, x )
J
restart;
bir jinsli tenglamani birinchi tipli chegaraviy va quyidagi boshlang’ich shartlar bilan yeching
u(0, x ) = f( x ) ,
bu yerda f(x) funksiya quyidagi ko’rinishda berilgan:
> T0:=1; a:=1;L:=12;
f(x):=x->piecewise(x
TO := 1 a := 1
L
f(x ) := x ^ piecewise! x <
L
"2’
TO, x < L, 0
:= 12
> plot(f(x),0..12,-0.1..1.1, numpoints=400,color=blue,thickness=3);
f (xi):=xi->piecewise(xi
f( E, ) := E, piecewisef E, <—, TO, E, < L, 0
Yechish uchun yuqorida olingan formuladan (1- chegaraviy shardan) foydalanamiz:
> C2_0 := 2/L*int(T0,xi = 0 .. L/2);
u(t,x):=sum(2/L*cos(Pi*n/L*x)*exp(-
PiA2*nA2/LA2*aA2*t)*int(T0*cos(Pi*n/L*xi),xi=0..L/2),n = 0..infinity);
C2 0 := TO
\
TO
2 co
u( t, x )
II
n = 0 V
л nx
L
eV
L
2
sin
Л n
TO
л n
n --> 2 n sin^ n) = 0
n --> 2 n + 1 sin( л n ) = (- 1) n
Tenglamaning yechimi:
(2 2 2 i %(2 n + l)2 a2 t i
>
, ч T0
u( t, x ) := — +
Z
2 (-l)n co/^n+HX , e
L
V n = 0 V
L
2
T0
% (2 n + l)
d_
dt
u( t, x )
= a
2
f—
Vdx2
\
u( t, X )
u(t,x):=C2_0/2+sum(2*(-1)An*cos(Pi*(2*n+1)/L*x)*exp(- PiA2*(2*n+1)A2/LA2*aA2*t)*T0/Pi/(2*n+1),n=0..infinity);
Do'stlaringiz bilan baham: |