U( t, x) := У C2 cos| | e
L
2
> eval(subs(t=0,U(t,x)=F(x)));
У C2 co
n
n = 0
к nx
L
= F( x )
Shuning uchun C2n koeffisiyentlar Fur’ye almashtirishi formulalari orqali topiladi: > C2[n]:=(2/L)*int(F(xi)*cos(Pi*n/L*xi), xi=0..L);
C2 := y n L
Umumiy yechimni yozamiz.
> F(xi):=f(xi);
U(t,x):=sum(C2[n]*cos(Pi*n/L*x)*exp(-PiA2*nA2/LA2*aA2*t),n=0..infinity);
F( £) := f( £)
r
2 2 2 ,
к n a t
U( t, x) := У
n = 0
.к nx
2 cog ——— | e L
L
2
f( £ )cog 1d£
huningdek, umumiy yechimquyidagi ko’rinishga ega: > u(t,x):=subs(F (xi)=f(xi),U(t,x));
( 2 2 2 Л
к
(к nx
2 cos —-— I e
L
2
u( t, x ) := У
n = 0
L
L
f(£ )cog | d£
n a t
Sterjen oxirlari har xil rejimda bo’lsin.
restart;
lambda[n]:=Pi*n/L;
U[n](t,x):=(C1[n]*sin(lambda[n]*x)+C2[n]*cos(lambda[n]*x))*exp(-
lambda[n]A2*aA2*t);
к n
п' L
( 2 2 2 Л
к п a t
U
2
L
n(tx) := (cin + C2n | | e
> eval(subs(x=0,U[n](t,x)*k=0)); eval(subs(x=L,U[n](t,x)* k=0));
C2 ev
L
2
k = 0
n
Г 2 2 2 Л
к n a t
(C1 sin(к n) + C2 cos(k n)) ev
L
2
k = 0
> simplify((C1[n]*sin(Pi*n)+C2[n]*cos(Pi*n))*exp(-PiA2*nA2/LA2*aA2*t)*k = 0) assuming n::integer;
2 2 2
к n a t
C2 (-1)n ev
n 4 '
L
2
k = 0
Bundan:
C2 = 0
n
> U[n](t,x):=C1[n]*sin(lambda[n]*x)*exp(-lambda[n]A2*aA2*t);
( 2 2 2. j
к n a t
U (t, x) := C1" sin| ^ |e
L
2
Umumiy yechim quyidagi ko’rinishga ega: > U(t,x):=sum(U[n](t,x), n=0..infinity);
to
U( t, x) := X C1
n = 0
к nx
n sin|-^ le
L
2
> eval(subs(t=0,U(t,x)=F(x)));
X C1 si
n
к nx , N sin I = F(x)
n = 0
n \ L
Shuning uchun, C2n koeffisiyentlar Fur’ye almashtirishi formulalari orqali topiladi:
>
C1
n
F( £ )co
ж n £
L
d£
.. ж nx 2 sin e
L
f(£ )coS Id£
0
Umumiy yechimni yozamiz.
> F(xi):=f(xi);
U(t,x) := sum(C1[n]*sin(Pi*n/L*x)*exp(-PiA2*nA2/LA2*aA2*t),n =0.. infinity);
F( £) := f( £)
c
2
ж
U( t, x ) := X
n = 0
Shuningdek, umumiy yechim quyidagi ko’rinishga ega > u(t,x):=U(t,x);
( 2 2 2 Л
ж n a t
u( t, x) := X
n = 0
ж nx
2 sin e
L
2
L
f(£ )coS I d£
Sterjen oxirlari har xil rejimda bo’lsin.
restart;
lambda[n]:=1/2*Pi*(1+2*n)/L;
U[n](t,x):=(C1[n]*sin(lambda[n]*x)+C2[n]*cos(lambda[n]*x))*exp(-
lambda[n]A2*aA2*t);
U_x [n] (t,x) :=diff(U [n](t,x),x);
ж (1 + 2 n )
2L
U (t, x) := \C1
n
. (ж (1 + 2 n)x
sin[ 2L
+ C2 co
n
ж (1 + 2 n ) x
2L
e
n2(1 + 2 n )2 a2 t ^
4 L2
C1 [n]:=(2/L)*int(F(xi)*cos(Pi*n/L*xi), xi=0..L);
U_x„ (t, х) :=
„, fn (1 + 2 n) x 1 fn (1 + 2 n) x1
2
f n2(1 + 2 n )2 a2 t 1
!
L
2
L
C1n cosf 2Z 1 n (1 + 2 n ) ! C2n sinf Л 1 n (1 + 2 n )
4 L
e
f n2(1 + 2 n )2 a2 t 1
4 L2
>
C1 n n (1 + 2 n) e
2
к
L
= 0
2 2 2,
n (1 + 2 n) a t
C1 sin n(1 + 2n> 1 + C2 co/*(1 + 2n) I Ie
4 L
n
n
2
Do'stlaringiz bilan baham: |