I
|
xi
|
yi
|
f(xi ,yi)
|
Aniq yechim
|
0
|
1
|
-1
|
1
|
-1
|
1
|
1,1
|
-0,9
|
0,801
|
-0,909091
|
2
|
1,2
|
-0,8199
|
0,659019
|
-0,833333
|
3
|
1,3
|
-0,753998
|
0,553582
|
-0,769231
|
4
|
1,4
|
-0,698640
|
0,472794
|
-0,714286
|
5
|
1,5
|
-0,651361
|
|
-0,666667
|
Jadvaldan taqribiy yechim va aniq yechim orasidagi farqlarni xam ko’rishimiz mumkin.
Bu usulni takomillashtirilgan ko’rinishlaridan biri Eyler-Koshi usulidir. Eyler-Koshi usuli yordamida esa taqribiy yechimlar quyidagi formulalar orqali xisoblanadi:
bu erda
.
Runge – Kutta usuli
Runge – Kutta usuli ko’p jixatdan Eyler usuliga o’xshash, ammo aniqlik darajasi Eyler usuliga nisbatan yuqori bo’lgan usullardan biridir. Runge – Kutta usuli bilan amaliy masalalarni yechish juda qulay. Buning sababi, bu usul orqali noma’lum funktsiyani xi+1 dagi qiymatini topish uchun uning xi dagi qiymati aniq bo’lishi etarli.Runge – Kutta usulini uning aniqlash darajasi bo’yicha bir nyecha usullarga ajratadilar. Shulardan amaliyotda eng ko’p qo’llanadigani to’rtinchi darajali aniqlikdagi Runge – Kutta usulidir.Birinchi tartibli differensial tenglama y’=f(x,y) uchun x=xi da y=yi (i=0,1,2, ...n) qiymatlar ma’lum bo’lsin. Bu erda “ui” boshlang’ich shart ma’nosida bo’lmasligi ham mumkin.
Tenglamaning yechimi qidirilayotgan kesma [a,b], xi=x0+ih (i=0,1,2,...n) nuqtalar bilan bir-biriga teng “n” ta bo’lakka bo’lingan.
Noma’lum funktsiya “u” ni x=xi+1 dagi qiymati yi+1= y(xi+1) ni topish uchun quyidagi ketma-ket hisoblash jarayonini amalga oshirmoq lozim bo’ladi:
K 1(i)=hfi(xi,yi)
K2(i)=hfi(xi +h/2, yi+K1(i)/2)
K3(i)=hfi(xi +h/2, yi+K2(i)/2) (7.5.1)
K4(i)=hfi(xi +h, yi+K3(i))
Funktsiyaning orttirmasi yi ni quyidagi formuladan topiladi
yi=(K1(i)+2 K2(i)+2 K3(i)+ K4(i)) / 6 (7.5.2)
Bu erda h=(b-a)/n – integrallash qadami. i ni har bir qiymati uchun (7.5.1) va (7.5.2) dagi amallarni bajaramiz va noma’lum funktsiya “u” ni qiymatlarini (tenglamaning yechimini) quyidagi formuladan topamiz.
yi+1=yi+ yi , (i=0,1,2, ...n) (7.5.3)
Runge – Kutta usuli bilan differensial tenglamani yechishda jadval tuzilsa hisoblash jarayoni birmuncha osonlashadi. Jadvalni tuzish tartibi quyidagicha:
(2) va (3) ustunlarga x va u ning kerakli bo’lgan qiymatlari yoziladi.
“x” va “u” larning qiymatlarini ((2)-va (3)-ustunlardan) u’=f(x,y) tenglamani o’ng tarafiga qo’yiladi va natijalarni (4) ustunga (satrlari mos ravishda) qo’yiladi.
Topilgan f(x,y) qiymatlarini integrallash qadami “h” ga ko’paytiriladi va natijalar (5) ustunga yoziladi.
K1(0) ni 1 ga, K2(0) va K3(0) larni 2 ga, K4(0) ni 1 ga ko’paytirib ularni (6) ustunga yozamiz.
I-IV jarayonni Ki ni (i=0,1,2, ...n) har bir qiymati uchun takrorlaymiz. (6)-ustunni qiymatlarining yig’indisini hisoblab, natijani 6 ga bo’lamiz va u=(1/6) (K1(i)+2 K2(i)+2 K3(i)+ K4(i)) ni topamiz. Va nihoyat yi+1=yi+ yi topiladi. YUqorida keltirilgan hisoblash tartibini [a,b] kesmani barcha nuqtalari uchun takrorlaymiz.
1-Jadval
|
X
|
U
|
u’=f(x,y)
|
K=hf(x,y)
|
u
|
|
2
|
3
|
4
|
5
|
6
|
|
x0
|
y0
|
f(x0 ,y0)
|
K1(0)
|
K1(0)
|
|
x0+h/2
|
y0+K1(0)/2
|
f(x0+h/2; y0+K1(0)/2)
|
K2(0)
|
2K2(0)
|
|
x0+h/2
|
y0+K2(0)/2
|
f(x0+h/2; y0+K2(0)/2)
|
K3(0)
|
2K3(0)
|
|
x0+h
|
y0+K3(0)
|
f(x0+h; y0+K3(0))
|
K4(0)
|
K4(0)
|
|
|
|
|
|
|
|
x1
|
y1=y0+ y0
|
f(x1 ,y1)
|
K1(0)
|
K1(0)
|
|
x1+h/2
|
y1+K1(1)/2
|
f(x1+h/2; y1+K1(1)/2)
|
K2(0)
|
2K2(0)
|
|
x1+h/2
|
y1+K2(1)/2
|
f(x1+h/2; y1+K2(1)/2)
|
K3(0)
|
2K3(0)
|
|
x1+h
|
y1+K3(1)
|
f(x1+h; y1+K3(1))
|
K4(0)
|
K4(0)
|
|
|
|
|
|
|
|
x2
|
y2=y1+ y1
|
|
|
|
|
|
Misol. Runge-Kutta usuli yordamida quyidagi differensial tenglamaga qo’yilgan boshlang’ich masalaning
y’= , u(1)=0 yechimi [1;1,5] kesmada h=0,1 qadam bilan topilsin.
Yechish. Yechimlar va xisobiy qiymatlar 2-jadvalda keltirilgan.
2-Jadval
i
|
xi
|
yi
|
f(xi, yi)
|
K=hf(xi, yi)
|
y1
|
0
|
1
1,05
1,05
1,1
|
0
0,05
0,057262
0,115907
|
1
1,145238
1,159071
1,310740
|
0,1
0,114524
0,115907
0,131074
|
0,1
0,229048
0,231814
0,131074
|
|
|
|
|
|
0,115323
|
1
|
1,1
1,15
1,15
1,20
|
0,115323
0,180807
0,188546
0,263114
|
1,309678
1,464447
1,477905
1,638523
|
0,130968
0,146445
0,147791
0,163852
|
0,130968
0,292889
0,295581
0,163852
|
|
|
|
|
|
0,147215
|
2
|
1,2
1,25
1,25
1,3
|
0,262538
0,344416
0,352591
0,443953
|
1,637563
1,801066
1,814146
1,983005
|
0,163756
0,180107
0,181415
0,198301
|
0,163756
0,360213
0,362829
0,198301
|
|
|
|
|
|
0,180805
|
3
|
1,3
1,35
1,35
1,4
|
0,443388
0,524495
0,551073
0,660028
|
1,982135
2,153696
2,166404
2,342897
|
0,198214
0,215370
0,216640
0,234290
|
0,198214
0,430739
0,443281
0,234290
|
|
|
|
|
|
0,216087
|
4
|
1,4
1,45
1,45
1,50
|
0,659475
0,776580
0,785532
0,912824
|
2,342107
2,521146
2,533493
2,717099
|
0,234211
0,252115
0,253349
0,271710
|
0,234211
0,504229
0,506700
0,271711
|
|
|
|
|
|
0,252808
|
5
|
1,5
|
0,912283
|
|
|
|
|
|
Do'stlaringiz bilan baham: |