Determinantlar, xossalari


Vektorlarning yo’naltiruvchi kosinuslari



Download 1,54 Mb.
bet13/17
Sana23.04.2022
Hajmi1,54 Mb.
#576235
1   ...   9   10   11   12   13   14   15   16   17
Bog'liq
«fizika, matematika va informatsion texnologiyalar» kafedrasi

Vektorlarning yo’naltiruvchi kosinuslari.
={x,y,z} vektor Ox,Oy,Oz koordinata o’qlari bilan mos ravishda burchaklar tashkil qilsin.
Ta’rif. vektorning koordinata o’qlari bilan hosil qilgan burchaklar kosinuslariga ya’ni cos ,cos,cos larga vektorning yo’naltiruvchi kosinuslari deyiladi.
Proyeksiyalash qoidalaridan foydalansak chizmadan ko’rinadiki
x=ax=prOx =| |cos ,
y=ay=prOU =| |cos
z=az=prOz =| |cos
Misol. A(1,2,3) V(2,4,5) bo’lsa, = vektorning yo’naltiruvchi kosinuslarini toping.
Yechish. ={1;2;2} , | |=3 , cos=1/3 ; cos=2/3 ; cos=2/3.

Skalyar ko’paytma.
1-ta’rif. va vektorlarning skalyar ko’paytmasi deb, shunday songa aytiladiki, bu son shu vektorlar uzunliklari bilan ular orasidagi burchak kosinusi ko’paytmasiga teng bo’ladi va odatda yoki ( ) ko’rinishda yoziladi.
Demak ta’rifga ko’ra =| || |cos ; = ^
Misol. | |=3, | |=2, =60° bo’lsa ( )=
Skalyar ko’paytmani quyidagicha ham ta’riflash mumkin.
2-ta’rif. Ikki vektorning skalyar ko’paytmasi deb, ihtiyoriy bittasining uzunligini ikkinchisining birinchi vektor yo’nalishidagi proyeksiyasi bilan ko’paytmasiga aytiladi. Pra =| |cos yoki Prb =| |cos tengliklardan foydalansak
=| || |cos=| |Pra =| | Prb ; Pra ; Prb
Skalyar ko’paytmaning fizik ma’nosi: kuchning moddiy nuqtani s masofaga ko’chirgandagi bajargan ishdir. yoki .
Skalyar ko’paytmaning xossalari.
1. o’rin almashtirish xossasi.
2. ( + ) = + taqsimot xossasi.
3. guruhlash xossasi.

  1. Agar va vektorlar bir xil yo’nalishdagi kollinear vektorlar

bo’lsa, =| || | chunki cos 0=1.
Agar qarama-qarshi yo’nalgan bo’lsa, =-| || | chunki cos1800=-1.
5. =| || |cos0=| |2 2= | |2
6. perpendikulyar bo’lsa , =0 bo’ladi.
Eslatma. 5 va 6 xossalardan foydalanib birlik vektorlarning skalyar ko’paytmalarini ko’rsak

tengliklarning o’rinli bo’lishi ravshan.
Skalyar ko’paytmaning koordinatalari orqali ifodasi.
Agar ={x1, y1, z1} , ={x2, y2, z2} vektorlar koordinatalari orqali berilgan bo’lsa, ni hisoblaylik.
={ x1 +y1 +z1 )(x2 +y2 +z2 )=(eslatmaga ko’ra)= x1x2+y1y2+z1z2
Demak koordinatalari bilan berilgan ikkita vektorning skalyar ko’paytmasi mos koordinatalari ko’paytmalarining yiğindisiga teng bo’lar ekan.
va vektorlar yiğindisi esa quyidagicha hisoblanadi:
={x1 x2; y1 y2; z1 z2}

Download 1,54 Mb.

Do'stlaringiz bilan baham:
1   ...   9   10   11   12   13   14   15   16   17




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish