Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd


  complete response with sinusoidal excitation



Download 5,69 Mb.
Pdf ko'rish
bet201/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   197   198   199   200   201   202   203   204   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

7.1.3 
complete response with sinusoidal excitation
Consider the circuit in Fig. 7.1-1 (a) with v
S
=
V
m
cos
w
 t V now. This sinusoidal waveform is switched 
on to the circuit at t 
=
0.
The complementary solution is the same as before – it is Ae
-
t
. The particular integral has to be 
obtained from 
dv
dt
v
V
t
C
+
=
C
m
cos
.
w
This equation has to be true for all t. That can happen only if both 
sides of the equation are time-functions with same waveshape. Therefore, 
dv
dt
v
C
C
+
must have same 
waveshape as that of cos
w
 t. That will imply that both 
v
C
and 
dv
dt
C
must have sinusoidal waveshape. 
Therefore, we can try 
v
a
t b
t
C
=
+
sin
cos
w
w
as a trial solution. Substituting this trial solution in the 
differential equation and collecting terms, we get,
(
) cos
(
)sin
cos
a
b
t
a b
t V
t
m
w
w
w
w
w
+
+ −
=
This equation can be true for all t only if the coefficients of sin
w
 t on both sides of the equation are 
equal and the coefficients of cos
w
 t on both sides of the equation are equal.

+ =

= ⇒ =
+
=
+
a
b V and a b
a
V
and b
V
m
m
m
w
w
w
w
w
0
1
1
2
2
.

=
+
+
+
=
+
particular solution 
w
w
w
w
w
w
w
V
t
V
t
t
m
m
2
2
2
1
1
1
1
sin
cos
cos(
−−

tan
)
1
w


7.6
The Sinusoidal Steady-State Response
The total solution 

v
Ae
t
t
t
C
for 
=
+
+

>


1
1
0
2
1
w
w
w
cos(
tan
)
.
This solution must approach 
zero value as t 

0 from right side since the initial value of voltage across capacitor is zero. Therefore, 
0
1
1
0
2
1
2
1
=
+
+

⇒ = −
+




Ae
V
A
V
m
m
w
w
w
w
cos( tan
)
cos( tan
)

=
+


+




v
V
t
V
e
m
m
t
C
V
É
2
1
2
1
1
1
cos(
tan
)
cos( tan
)
w
w
w
w
Once again we see that the total response contains a transient term that vanishes as t 


and a 
steady-state term that persists. The steady-state term is a sinusoidal waveform of same frequency as 
that of input sinusoid. But it has a phase difference with respect to input sinusoid. It is a phase lag. 
Both the amplitude and phase of steady-state response component depend on the angular frequency 
w
of input sinusoid. The steady-state response is given by particular integral and the transient response 
is contributed by complementary function.
We can proceed the same way in the case of Fig. 7.1-1 (b) too. We solve only for the particular 
integral of differential equation this time since we know that the transient response will vanish in 
this circuit. We try out the solution i
2
=
a sin 
w
 t 

b cos 
w
 t in 
d i
dt
di
dt
i
V
t
2
2
2
2
2
3
+
+ =
m
cos
w
to find the 
sinusoidal steady-state solution for second mesh current in the circuit when the circuit is driven by V
m
cos
w
 t V. Substituting the trail solution in the differential equation and collecting terms, we get,
(
) cos
(
)sin
cos

+
+
+ −

+
=
w
w
w
w
w
w
w
2
2
3
3
b
a b
t
a
b a
t V
t
m
Equating coefficients of sin
w
 t and cos
w
 t on both sides of the equation, we get
(
)
(
)

+
+ =


+
=
w
w
w
w
2
2
3
3
0
b
a b
V
a
b a
m
and 
Solving for and b we get 
a
V
b
V
=

+
=


+
3
1
9
1
1
9
2 2
2
2
2 2
2
w
w
w
w
w
w
m
m
and 
(
)
(
)
(
)
Therefore, the sinusoidal steady-state response for i
2
in Fig. 7.1-1 is 
i t
V
t
V
t
V
2
2 2
2
2
2 2
2
3
1
9
1
1
9
1
( )
(
)
sin
(
)
(
)
cos
(
=

+
+


+
=

w
w
w
w
w
w
w
w
w
m
m
m
22 2
2
1
2
9
3
1
)
cos
tan
+







w
w
w
w
t
We observe once again that the response is a pure sinusoidal waveform at same frequency as that 
of input sinusoid. But the response has a phase lag with respect to the input. Both the amplitude and 
phase of response depend on the angular frequency 
w
of the input sinusoid.
The steady-state response of a circuit variable in a linear dynamic circuit under sinusoidal 
excitation is a sinusoidal waveform of same frequency as that of input. The response will, 
in general, have a phase difference with respect to input. The amplitude and phase of 
response under steady-state condition will depend on the amplitude of input and the 
angular frequency of input sinusoid.


The Complex Exponential Forcing Function 
7.7
7.2 
the complex exponentIal ForcInG FunctIon
The method outlined in the previous section to determine the sinusoidal steady-state response of a 
dynamic circuit can be summarized as follows:
1. Use mesh or nodal analysis to obtain integro-differential equations of the circuit.
2. Differentiate equations again to eliminate integrals, if needed. 
3. Choose one of the mesh currents (or node voltages) as the describing variable for the circuit. 
Eliminate all the other variables and obtain an n
th
order linear constant-coefficient differential 
equation describing the chosen circuit variable.
4. Assume solution in the form (a sin
w
 t 

b cos
w
 t). Substitute the assumed solution in the differential 
equation. Equate coefficients of cosine and sine on both sides of the equation. Solve for a and b 
using the resulting equations.
5. Express the solution in the form of a single sinusoid with phase shift.
6. Find the other mesh currents (or node voltages) which were eliminated earlier by using the 
elimination equations in the reverse. Once all the mesh currents (node voltages) are available, any 
element variable can be obtained from them.
There is nothing wrong with this method – except that it is going to be very tedious if the circuit 
contains more than two energy storage elements.
Hence, we look for another simpler and more elegant method to obtain sinusoidal steady-state. 
Euler’s identity, which relates a complex exponential time-function to trigonometric time-functions, 
is the key to this new method. 
Euler’s Identity 
e
j
j
q
q
q
=
+
cos
sin .
(7.2-1)
By letting 
q
 
=
w
 t and using Euler’s Identity, we can express 
j
w
 t
as 
e
t
j
t
j t
w
w
w
=
+
cos
sin
and by 
letting 
q
 
=
-
w
 t and using Euler’s Identity, we can express e
-
j
w
 t
as 
e
t
j
t
j t

=

w
w
w
cos
sin
. Therefore,
cos
sin
w
w
w
w
w
w
t
e
e
t
e
e
j
j t
j t
j t
j t
=
+
=



2
2
and 
(7.2-2)

j
w
 t
is the complex exponential function of unit amplitude. Equation. 7.2-2 expresses unit amplitude 
cosine and sine functions of time with an angular frequency of 
w
in terms of two complex exponential 
functions of time with 
w
and 
-
w
in the indices of exponential functions. We can also express sine and 
cosine functions in terms of complex exponential function in another way too as in Eqn. 7.2-3.
cos
Re[
]
sin
Im[
]
w
w
w
w
t
e
t
e
j t
j t
=
=
and 
(7.2-3)

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   197   198   199   200   201   202   203   204   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish