References
1.
M. Buist and A. Pullan, “Torso Coupling Techniques for the Forward Problem of Electrocardiography,” Ann. Biomed. Eng.,
vol. 30, no. 10, pp. 1299–1312, 2002, doi: 10.1114/1.1527045.
2.
T. J. Barth, D. E. Keyes, and D. Roose, Computing the Electrical Activity in the Heart. 2007.
3.
O. Skipa, “Linear Inverse Problem of Electrocardiography :,” Dissertation, no. April, 2004.
4.
A. V. Shahidi, P. Savard, and R. Nadeau, “Forward and Inverse Problems of Electrocardiography: Modeling and Recovery
of Epicardial Potentials in Humans,” IEEE Trans. Biomed. Eng., vol. 41, no. 3, pp. 249–256, 1994, doi: 10.1109/10.284943.
5.
Y. Wang and Y. Rudy, “Application of the method of fundamental solutions to potential-based inverse electrocardiography,”
Ann. Biomed. Eng., vol. 34, no. 8, pp. 1272–1288, 2006,
6.
G. Tuboly, G. Kozmann, and I. Maros, “Computational aspects of electrocardiological inverse solutions,” IFAC-
PapersOnLine, vol. 28, no. 20, pp. 48–51, 2015,
7.
Andrew Pullan, L. Cheng, and M. Buist, Mathematically modelling the electrical activity of the heart: from cell to body
surface and back again. World Scientific Publishing Company, 2005.
8.
G. T. Lines, M. L. Buist, P. Grøttum, A. J. Pullan, J. Sundnes, and A. Tveito, “Mathematical models and numerical methods
for the forward problem in cardiac electrophysiology,” Comput. Vis. Sci., vol. 5, no. 4, pp. 215–239, 2003, doi:
10.1007/s00791-003-0101-4.
9.
M. L. Buist and A. J. Pullan, “The Effect of Torso Impedance on Epicardial and Body Surface Potentials: A Modeling Study,”
IEEE Trans. Biomed. Eng., vol. 50, no. 7, pp. 816–824, 2003, doi: 10.1109/TBME.2003.813536.
10.
C. P. Bradley, A. J. Pullan, and P. J. Hunter, “Effects of Material Properties and Geometry on Electrocardiographic Forward
Simulations,” Ann. Biomed. Eng., vol. 28, no. 7, pp. 721–741, 2000, doi: 10.1114/1.1289467.
11.
Gulrajani, “The forward and inverse problems of electrocardiography,” IEEE Eng. Med. Biol. Mag., vol. 17, no. 5, pp. 84–
101, 1998.
12.
A. Pullan, “A high-order coupled finite element/boundary element torso model,” IEEE Trans. Biomed. Eng., vol. 43, no. 3,
pp. 292–298, 1996, doi: 10.1109/10.486286.
13.
S. E. Geneser, S. Choe, R. M. Kirby, and R. S. MacLeod, “The influence of stochastic organ conductivity in 2D ECG forward
modeling: A stochastic finite element study,” in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference,
2006, pp. 5528–5531.
14.
S. E. Geneser, R. M. Kirby, and R. S. MacLeod, “Application of stochastic finite element methods to study the sensitivity of
ECG forward modeling to organ conductivity,” IEEE Trans. Biomed. Eng., vol. 55, no. 1, pp. 31–40, 2008, doi:
10.1109/TBME.2007.900563.
15.
R. N. Klepfer, C. R. Johnson, and R. S. Macleod, “The effects of inhomogeneities and anisotropies on electrocardiographic
fields: A 3-D finite-element study,” IEEE Trans. Biomed. Eng., vol. 44, no. 8, pp. 706–719, 1997, doi: 10.1109/10.605427.
*
Hamed Kaghazchi
1
[0000-0003-3085-1669] and Mustafa Kerem Ün
2
[0000-0003-1818-1383]
16.
Y. Yamashita, “Inverse Solution in Electrocardiography: Determining Epicardial from Body Surface Maps by Using the
Finite Element Method: The Basic Problems on the Body Surface Potential Mapping,” Jpn. Circ. J., vol. 45, no. 11, pp. 1312–
1322, 1981.
17.
D. Wang, R. M. Kirby, and C. R. Johnson, “Finite Element Refinements for Inverse Electrocardiography : Hybrid-Shaped
Elements and High-Order Element Truncation,” Comput. Cardiol., vol. 0, pp. 193–196, 2009, [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5445436&tag=1.
18.
D. Farina, “Forward and inverse problems of electrocardiography : clinical investigations,” 2008.
19.
Wang, “Finite Element Solutions to Inverse Electrocardiography,” no. December, 2012.
20.
D. Farina, Forward and Inverse Problem of Electrocardiography: Clinical Investigations, PhD thesis. Universität Karlsruhe,
2008.
Do'stlaringiz bilan baham: |