Conference Paper


predictions. Lastly by using the abstraction of this second net



Download 0,56 Mb.
Pdf ko'rish
bet3/4
Sana29.01.2022
Hajmi0,56 Mb.
#418378
1   2   3   4
Bog'liq
ADeepLearningAlgorithmtoForecastSalesofPharmaceuticalProductsA

predictions. Lastly by using the abstraction of this second net 
plus recently captured information, a third shallow net is trained 
to produce its own one week ahead estimates, using new timing 
and data procedures. After training, the whole stacked system 
can produce stable weekly forecasting with up to 91%_ 55 % hit 
rate, for assorted products and periods. The system has been 
tested in real time with real data.
 
Keywords—
 
Deep Learning, Time Series Prediction, Sales 
Forecasting. 
I.
I
NTRODUCTION 
In the deep learning world state-of-the art performance have 
gained a good reputation in fields like object recognition [1], 
speech recognition [2], natural language processing [3], 
physiological affect modelling [4] and many others. More 
recently papers on time-series prediction or classification with 
deep neural networks have been reported [5] [6] [7] [8].
The search for depth 
Both in biology and circuit complexity theory it is maintained 
that deep architectures can be much more efficient (even 
exponentially efficient) than shallow ones in terms of 
computational power and abstract representation of some 
functions [10] [11]. Unfortunately, well stablished gradient 
descent methods such as backpropagation, that have proved 
effective when applied to shallow architectures, does not work 
well when applied to deep architectures. 
In previous works [12] [13] [14] we have shown an innovative 
line of deep learning algorithms, with its own set of 
advantages / disadvantages, but eventually producing efficient 
neural computing processors. We have taken these ideas 
further and in this paper, we propose a DNN specialized in 
forecasting the sales or pharmaceutical products. The general 
problem is to find, for each outlet and for each product, an 
ideal balance that minimizes inventory costs and maximize 
customer attention. For a distribution centers with hundreds of 
outlets and thousands of products, this becomes a most 
entangled and important operation, where deep learning could 
contribute with practical solutions.
Our methodology contemplates the training with 
backpropagation of shallow networks inside explicit scenarios, 
with specialized tasks, where predictive information about 
predictive sales, circulates freely and is used as immediate 
targets or rewards for local neural training. The final objective 
is to produce reliable abstract representations of the data 
behavior at both short-term and long-term influences, codified 
in hidden layers, and then stack them together as to produce 
forecasting information. 
We also propose a primordial method to measure the 
quality of abstract representations generated in the different 
used hidden layers, by monitoring, while training is in 
progress, the neural activity of hidden neurons. This procedure 
requires quadratic sum of differences over a selected period.


II.
D
EEP 
N
ETWORK
A.
 
Deep architecture
The proposed stacked network utilizes five layers of 
sigmoidal neurons organized as one input, three hidden and 
one output layers. To combine the higher-level features of 
different data behaviors, hidden layers are trained separately 
and then stacked, on top of which the output layer is added. 
The third hidden layers also incorporated as input recently 
captured information such as the last eight weeks’ average, and 
some fresh peaks and valleys values (Fig. 1).
Figure 1. Deep predictor 
For operative purposes, the proposed stacked architecture is 
derived from three shallow networks called Autoencoder, 
Precursor and Gambler. 
B.
 
Data Handling 
Given three years of daily sales grouped in weeks, the 
network unravels the problem of predicting sales one week 
ahead of the current input window (one product-one outlet). 
The dataset is taken from the database of a real pharmaceutical 
databases in Ecuador. For training purposes, the available data 
is divide in three mobile zones (Fig. 2), where times moves to 
the right. 
The first initial zone, to the left, is reserved to train the first 
two shallow nets “autoencoder-predictor” which work as a 
coordinate duet.
The next zone, of about 10 weeks, is reserved to train the net 
“gambler”, which holds the final solidary network output and
provides the final prediction information. Finally, the zone 
“unknown future” is used to test the performance of the system 
and to make a real prediction, when the unknown future line 
reaches the end of the data. At any time, more data can be 
added and the system responds creating new predictions.
C.
 
Input Vector 
The input vector is composed by a moving window of 16 
consecutive weeks plus three other elements defined by the 
day/month/year where the top right of the moving window 
stays at a given time instant (Fig. 2). All 19 entries are 
normalized to neural values inside the analog segment [0,1]. 
When a target is needed, it will be taken as the sale value of 
the week next to the right of the sample window (near future). 
The shown data ranges from January 2014 to April 2017. 
IT _Empresarial. 


Figure 2. Data handling and input vector. Weekly sales behavior of a typical 
pharmaceutical products, with an erratic pattern of consumption
and a moving 
window of 16 weeks data sale plus window ubication date information. 

For training purposes, the moving widow travels in 
different space-time patterns for diverse training scenarios. 
III.
F
IRST SCENARIO
:
T
HE AUTOENCODER
Our autoencoder has 19 inputs, 11 hidden and 19 output 
neurons. To train it, the moving window is located at a random 
position inside the autoencoder zone and the same input vector 
is used as target.
The job of the trained autoencoder is to reproduce in its 
output, as exactly as possible, the image of the moving
window just loaded in its inputs, for any random position in the 
allowed area. Since hidden neurons are less than input neurons, 
data compression and abstract representations must occur 
during training. Our stacked systems will work with 
abstraction that travel from layer to layer as the main source of 
information, so we take special care about abstractions’ 
quality.
Figure 3. The Autoencoder and the Precursor. Once the Autoencoder is 
trained, its hidden layer becomes the input to the Precursor, which never sees 
the real input windows but only abstractions created by hidden1. Also, the 
learning cycles of precursor do not affect the weights of the autoencoder 
We try several metric methods to avoid overfitting-underfitting 
problems [15] and at the same time try to guarantee quality 
abstractions from the involved hidden layers. We finally 
adopted the following scheme, which begins by measuring the 
quadratic variation V among all the outputs of the hidden 
neuron in two consecutive randomly selected images in times t 
and t-1. That is: 
(1) 
Where: 
Vt = hidden outputs variation between two consecutive 
inputs
n = number of hidden neurons 
o
i,t
= output of hidden neuron i at time t. 
In a typical run, with small initial random weights in the 
hidden layer, V starts from a small value and then grows into a 
random oscillatory time series. We use this outcome and 
introduce a selective peak search procedure where the last 
found peak value of V is stored until a bigger peak value is 
found. In pseudo code: 

Download 0,56 Mb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish