COMPUTERS COMPUTING AND IT
Computers and computer networks have changed the way in which people work, play, do business, run organizations and countries, and interact with one another on a personal level. The workplace of the early twentieth century was full of paper, pens, and typewriters. The office of the early twenty-first century is a place of glowing monitor screens, keyboards, mice, scanners, digital cameras, printers, and speech recognition equipment. The office is no longer isolated; it is linked by computer networks to others like it around the world. Computers have had such an effect that some say an information revolution is occurring. This revolution may be as important as the printing revolution of the fifteenth century, the industrial revolution of the nineteenth century, or the agricultural revolutions of the ancient and medieval worlds. The computer was invented to perform mathematical calculations. It has become a tool for communication, for artistic expression, and for managing the store of human knowledge. Text, photographs, sounds, or moving pictures can all be recorded in the digital form used by computers, so print, photographic, and electronic media are becoming increasingly indistinguishable. As Tim Berners-Lee (1998), developer of the World Wide Web, put it, computers and their networks promise to become the primary medium in which people work and play and socialize, and hopefully, they will also help people understand their world and each other better.
During the last half of the twentieth century, electronic digital computers revolutionized business, learning, and recreation. Computers are now used in newspaper, magazine, and book publishing and in radio, film, and television production. They guide and operate unmanned space probes, control the flow of telecommunications, and help people manage energy and other resources. They are used to categorize and preserve the store of human knowledge in libraries, archives, and museums. Computer chips called "embedded microprocessors" are found in the control systems of aircraft, automobiles, trains, telephones, medical diagnostic equipment, kitchen utensils, and farm equipment. The effect on society has been so great that digital information itself is now exchanged more rapidly and more extensively than the commodities or manufactured goods it was originally supposed to help manage. Information has become an essential commodity and, some would argue, a necessary social good.
The history of computing is several stories combined. One is a hardware story—a tale of inventions and technologies. Another is a software story—a tale of the operating systems that enabled specific computers to carry out their basic functions and the applications programs designed to deliver services to computer users. A third story tells how computers provide answers to the problems of society, and how they in turn create new possibilities for society.
The computer has transformed print journalism and magazine and book production, changing the ways in which stories are researched, written, transmitted to publishers, typeset, and printed. Through computing and telecommunications, a news story breaking in Asia can be sent within seconds to North America, along with digital pictures. Word-processing software and more sophisticated desktop publishing programs allow authors to create and revise documents easily and to check them for spelling, grammar, and readability. Copies of digital documents can be printed on demand, and because computers check for transmission errors, all the copies will be identical. While the first word-processing programs offered little more than typewriter-style characters, the introduction of graphical user interfaces (GUIs) in the 1980s and 1990s opened new design possibilities. Writers could choose from a variety of type fonts, select different page layouts, and include photographs and charts. Some feared that this might eliminate jobs since tasks performed by authors, editors, typesetters, proofreaders, graphic designers, and layout artists could all be performed by one person with a computer. Laptop or notebook computers gave writers even more flexibility. A reporter on location could compose a story and transmit it immediately to a newspaper (using a modem and a hotel room telephone) on the other side of the globe and, perhaps, to wire news services such as The Associated Press or the Reuters news agency. Satellite uplinks, cellular phones, and infrared "beaming" between machines provide even more possibilities. Moreover, digital photography eliminates the time taken to develop photographs, and digital pictures can be transmitted as easily as text. Computers have revolutionized radio, television, and film production as well. Computerized camera switching and special-effects generators, electronic music synthesizers, photographic exposure control, and digital radio and television programming are all examples. Computer graphics can be used to superimpose sports statistics over a picture of a game in progress or allow a commentator to explain a key play by drawing a diagram over a television picture. Computers have made it possible to produce the entire programming lineup of a radio station without relying on tape recorders except for archival materials or for recordings made in the field.
Digital sound editing can eliminate noise, mix voice and music, and give producers second-by-second precision in the assembly of programs. Computerized film processing can provide better quality images or allow images to be converted from color to black-and-white and vice versa. While movie animation has traditionally involved photographing thousands of separately drawn pictures or "cells," computer animation can use fewer drawings and produce thousands of variations. Special effects are much more convincing when the computer handles the lighting, perspective, and movement within the movie scene.
Speech recognition and dictating software can convert voice recordings directly to word-processed text, and translation programs can then rewrite the word-processed text into another human language. Musicians can compose new works at a computer keyboard and create a printed score from the finished version.
Computing has changed the way writers research and prepare scientific articles. During the early 1970s, a small number of databases containing "abstracts" (i.e., summaries of scholarly and popular articles) could be searched offline. Users submitted lists of subjects or phrases on coding forms. Keypunchers typed them onto computer cards, and operators processed them on mainframe computers. The answers would be available the next day. Library catalogs were printed on paper cards or computer output microform (COM). A microfiche is a transparent plastic slide, roughly the size of an ordinary index card, but it contains images of many pages of computer output.
The Library of Congress, and national libraries in other countries, had by this time converted most of the descriptions of the books they owned into machine-readable form. Toward the end of the 1970s, research databases and library catalogs were becoming widely available online. The Dialog database, and library services such as the Online Computer Library Center (OCLC), made it possible to search the contents of many journals or the holdings of many libraries at once. Standards such as the Machine-Readable Cataloging format (MARC) made it possible to exchange this information worldwide and to display it on many different types of computers. However, limits on computer disk space, telecommunications capacities, and computer processing power still made it impractical to store the full text of articles.
Because of the costs, researchers working for large institutions were the main users of these services. By the mid-1980s, when microcomputer workstations became widely available and compact disc read only memory (CD-ROM) became a practical distribution method, much research could be conducted without connecting to large central databases. Companies such as EBSCO and Info Trac began licensing CD-ROMs to their subscribers. With better magnetic "hard" disks and faster microcomputer chips, full-text storage and retrieval finally became workable.
Do'stlaringiz bilan baham: |