Chiziqli tenglamalar sistemasining yechishning Kramer usuli



Download 124,16 Kb.
bet1/2
Sana05.04.2023
Hajmi124,16 Kb.
#924920
  1   2
Bog'liq
Chiziqli tenglamalar sistemasining yechishning kramer usuli


Chiziqli tenglamalar sistemasining yechishning Kramer usuli

Chiziqli tenglamalar sistemasining yechimini topishni oldin ikki noma’lumli ikkita chiziqli tenglamalar sistemasi uchun qaraymiz. Ushbu ikki noma’lumli ikkita chiziqli tenglamalar sistemasi



dan, birinchi tenglamani ga, ikkinchi tenglamani ga hadma-had ko’paytiramiz va hosil bo’lgan tenglamalarni qo’shamiz, natijada
(1)

tenglama hosil bo’ladi. Xuddi shunga o’xshash, 1-tenglamani ga, 2- tenglamani ga hadma-had ko’paytirib, hosil bo’lgan tenglamalarni qo’shib ushbuni hosil qilamiz:




(2)

bo’lgani uchun, quyidagi belgilashlarni kiritib




  1. va (2) tengliklarni


ko’rinishda yozish mumkin. Bundan bo’lsa,

bo’ladi, yoki determinantlar orqali yozsak



Bu formulalarga Kramer formulalari deyiladi, bunda yordamchi determinant determinantning birinchi ustunini ozod hadlar bilan, da esa ikkinchi ustun ozod hadlar bilan almashtiriladi. determinantga tenglamalar sistemasining determinanti deyiladi.


SHunday qilib, berilgan chiziqli tenglamalar sistemasining determinanti 0 dan farqli bo’lsa, sistema yagona yechimga ega bo’ladi.
Endi sistemaning determinanti 0 ga teng, yahni

bo’lsin. Bu holda 1-tenglamaning noma’lumlari oldidagi koeffitsientlari 2-tenglamaning noma’lumlari oldidagi koeffitsientlariga proportsionaldir. Haqiqatan, koeffitsientlardan biri, masalan noldan farqli bo’lsin deb bilan belgilasak, bundan bo’ladi. U holda tenglikdan


bo’lib, kelib chiqadi. Bularni hisobga olib, berilgan sistemani
(3)
ko’rinishda yozish mumkin. bunda ikkita xususiy hol bo’lishi mumkin:
1) ikkala va determinantlar 0 ga teng, yahni bundan , chunki .
Bu holda sonlar sonlarga proportsional bo’lib, berilgan tenglamalar sistemasi ushbu ko’rinishda bo’ladi:

SHunday qilib, sistemaning ikkinchi tenglamasi, birinchi tenglamasidan uning ikkala qismini ga ko’paytirish bilan hosil qilinadi, yahni u 1-tenglamaning natijasidir. Bu holda berilgan sistema cheksiz ko’p yechimlar to’plamiga ega bo’ladi. Masalan, ga ixtiyoriy qiymatlar berib, ning tegishli qiymatini
tenglikdan topamiz.
2) va determinantlardan hech bo’lmaganda bittasi 0 dan farqli, masalan,
bo’lsin. U holda bo’ladi, demak .
bu holda (3) sistemadan ma’lum bo’ladiki, tenglama birinchi tenglamaga qarama-qarshidir. Demak, berilgan sistema yechimga ega emas, yahni birgalikda emas.
Endi uch noma’lumli uchta tenglamalar sistemasini qaraymiz:
(4)
tenglamalar sistemasi berilgan bo’lsin. Bu sistema noma’lumlari koeffitsientlaridan ushbu determinantni tuzamiz:

bunga (4)
Download 124,16 Kb.

Do'stlaringiz bilan baham:
  1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish