Ch. 3: Forced Vibration of 1-dof system



Download 1,63 Mb.
Pdf ko'rish
bet3/4
Sana22.11.2019
Hajmi1,63 Mb.
#26787
1   2   3   4
Bog'liq
Ch3

for the response x(t) by means of Fourier analysis.

3.4 Periodic Excitation


Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation

(

)

(



)

( )


( )

( )


( )

0

0



2

1

1



2

1

2



2

0

0



FBD and assume 

   


,    

,    


2

Write 


 in the Fourier series expansion

2

,    



,    

,   0


1

1

x



x

n

n

in

t

n

n

T

in

t

n

y

x

F

ma

mx

k

y

x

k x cx

k

k

c

mx cx

k

k

x

k y

m

m

y t

A

y t

C e

y t

B

t

t

T

T

T

C

y t e

dt

Be

T

T

ω

ω



ω

ζ

ω



π

ω



=−∞



>



=

=





+

+



+

+

=



=

=

=



=

= +


≤ ≤

=

=





(

)

0



0

0

0



2

2

2



2

2

0



0

0

1



Integration formula:  

  and  


1

2

1



,  

0

2



2

2

2



T

T

in

t

in

t

ax

ax

ax

ax

T

T

in

t

in

t

T

T

n

A

dt

te

dt

T

T

e

e

e dx

c

xe dx

ax

c

a

a

B

e

A

e

iA

C

in

t

n

T

T

T

n

in

in

T

T

A

C

B

ω

ω



π

π

π



π

π

π





+

=

+



=

− +










=

+



=



















= +





Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation

( )

(

)



( )

( )


(

)

( )



(

)

(



)

0

0



1

0

1



2

1

2



2

0

0



1

2

2



2

0

0



1

2

2 Re



cos

sin


2

2

1



sin

2

1



Frequency response  

1

2



1

1

2



1

1

2



n

n

n

n

n

n

n

n

n

A

iA

y t

B

n

t

i

n

t

n

A

A

y t

B

n

t

n

H

i

k

k

r

i

r

H

i

n

n

k

k

i

H

n

n

k

k

ω

ω



π

ω

π



ω

ζ

ω



ω

ω

ζ



ω

ω

ω



ω

ζ

ω



ω

=



=



= + +



+



= + −



=



+

− +


=







+



+









=







+

+









( )


(

)

0



1

2

2



0

2

2



0

1

1



2

2

,    



tan

1

1



sin

2

n



n

n

ss

n

n

n

n

H

n

k

k A

A

x

t

B

H

n

t

H

k

k

n

ω

ζ



ω

ω

ω



ω

π



=







=





− ⎜










=

+



+



+





Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation



Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation



Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation



Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation



Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation



Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation



Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation



Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation



Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation



Ch. 3: Forced Vibration of 1-DOF System

3.5 


Non-periodic Excitation

Harmonic and steady-state excitation and response are 

conveniently described in the frequency domain.  For

deterministic non-periodic excitation and response, time

domain technique is more suitable.

We cannot find the repeated pattern that lasts forever 

(both in the past & future) for the non-periodic excitation.

System response to the unit impulse, called the impulse 

response, will be first studied.  Then, this fundamental

response will be used to synthesize the response of the

LTI system to arbitrary excitation.

3.5 Non-periodic Excitation



Ch. 3: Forced Vibration of 1-DOF System

3.5 Non-periodic Excitation



Ch. 3: Forced Vibration of 1-DOF System

Impulse


The unit impulse, or Dirac delta function, is defined as

This means that the unit impulse is zero everywhere

except in the neighborhood of  t=a.  Since the area

under the graph δ-t  is  1,  the  value  of                        is  very 

large in the vicinity of t=a.

The impulse of magnitude    , which may represent a

large force acting over a short period, can be written as

3.5 Non-periodic Excitation

(

)

(



)

0  for 


1

t

a

t

a

t

a dt

δ

δ



−∞



=



=

(



)

t

a

δ



ˆ

F

( )


(

)

ˆ



F t

F

t

a

δ

=





Ch. 3: Forced Vibration of 1-DOF System

3.5 Non-periodic Excitation



Ch. 3: Forced Vibration of 1-DOF System

The unit impulse has a useful property called the

“sampling property”.  Multiplying a continuous function 

by                , and integrating w.r.t. time:

which is just the value of f(t) at t=a.  This is a way in

evaluating integrals involving with impulse.

3.5 Non-periodic Excitation

( )


f t

(

)



t

a

δ



( ) (

)

( ) (



)

( )


f t

t

a dt

f a

t

a dt

f a

δ

δ



−∞



−∞

=



=





Ch. 3: Forced Vibration of 1-DOF System

Impulse response

The impulse response, h(t), is the response to the unit

impulse, δ(t), applied at t=0 with zero initial conditions.

The impulse response is very important since it contains 

all the system characteristics and can be used to find

the response to arbitrary excitation of LTI system via the 

convolution integral theorem.

The impulse response of a 1 DOF MBK system must

satisfy


subject to i.c.

3.5 Non-periodic Excitation

( )

( )


( )

( )


mh t

ch t

kh t

t

δ

+



+

=

( )



( )

0

0,  



0

0

h



h

=

=



Ch. 3: Forced Vibration of 1-DOF System

3.5 Non-periodic Excitation

( )

(

)



( )

0

0



0

Get rid of the impulse function by

integrating over the duration  0,

 of the impulse

1

Take limit as 



0 and apply the i.c.

to evaluate the integral on the left hand side:

lim

mh

ch

kh dt

t dt

m

ε

ε



ε

ε

δ



ε

+



+

=

=





( )

( )


( )

( )


( )

( )


( )

( )


( )

( )


( )

( )


0

0

0



0

0

0



0

0

0



0

0

lim



0

0,  assuming 

 is not continuous

lim


lim

0

0,  assuming 



 is continuous

lim


lim

0

0,  assuming 



 is continuous

0

1



h t dt

mh t

mh

h t

ch t dt

ch t

ch

h t

kh t dt

gh

t

h t

mh

ε

ε



ε

ε

ε



ε

ε

ε



ε

ε

ε



+

+





+

=



=

=



=

=

=



=

=





Ch. 3: Forced Vibration of 1-DOF System

Therefore, the effect of a unit impulse at t=0 is to

produce equivalent initial velocity (impulse-momentum)

Now, we are ready to find the impulse response.  The

equivalent system is a homogeneous system with i.c.

If the system is underdamped, the impulse response is

Note that the above i.c. is not the actual i.c.

3.5 Non-periodic Excitation

( )

0

1 /



h

m

+

=



( )

( )


0

0,  


0

1 /


h

h

m

=

=



( )

1

sin



,  0

0,  0


n

t

d

d

e

t t

m

h t

t

ζω

ω



ω



= ⎨





<



Ch. 3: Forced Vibration of 1-DOF System

3.5 Non-periodic Excitation

Impulse response of underdamped system


Ch. 3: Forced Vibration of 1-DOF System

( )


x t

Linear Time Invariant (LTI) system has the characteristic 

that the shape of the response will not be influenced by

the time the input is applied to the system.  That is

3.5 Non-periodic Excitation

LTI system

( )

f t

LTI system

(

)

f t



a

(



)

x t

a

Hence if the impulse is applied at t=t



o

, the response is

( )

(

)



(

)

0



0

0

0



1

sin


,  

0,  


n

t t

d

d

e

t

t

t

t

m

h t

t

t

ζω

ω



ω





= ⎨




<



Ch. 3: Forced Vibration of 1-DOF System

Total response of underdamped MBK with i.c. x(a)=x

0

and v(a)=v



subject to the impulse force                 

3.5 Non-periodic Excitation

(

)



ˆ

F

t

a

δ



( )

(

)



(

)

(



)

(

)



(

)

(



)

(

)



(

)

(



)

( )


(

)

(



)

(

)



1

2

1



2

1

2



ˆ

      


sin

cos


sin

ˆ

      



sin

cos


,   

ˆ

sin



cos

          



n

n

n

n

h

p

t a

t a

d

d

d

d

t a

d

d

d

t a

n

d

d

d

x t

x

x

F

e

A

t

a

A

t

a

e

t

a

m

F

e

A

t

a

A

t

a

t

a

m

F

x t

e

A

t

a

A

t

a

m

ζω

ζω



ζω

ζω

ω



ω

ω

ω



ω

ω

ω



ζω

ω

ω



ω







=

+

=



+



+





=



+

+















= −

+



+









+

(

)



(

)

(



)

1

2



ˆ

cos


sin

n

t a

d

d

d

d

d

F

e

A

t

a

A

t

a

m

ζω

ω



ω

ω

ω



ω







+











Ch. 3: Forced Vibration of 1-DOF System

Total response of underdamped MBK with i.c. x(a)=x

0

and v(a)=v



subject to the impulse force                 

3.5 Non-periodic Excitation

(

)



ˆ

F

t

a

δ



( )

( )


( )

(

)



(

)

(



)

(

)



0

0

1



2

0

2



0

2

1



2

0

1



0

0

0



0

0

Apply i.c. 



 and 

 to solve for   and 

:

ˆ

ˆ



1

  and  


1

sin


cos

,   


n

n

d

d

n

d

t a

n

d

d

d

x a

x

x a

v

A

A

x

A

F

v

A

A

m

F

A

x

A

x

v

m

Download 1,63 Mb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish