C++ Neural Networks and Fuzzy Logic: Preface


Changes to the layer.cpp File



Download 1,14 Mb.
Pdf ko'rish
bet266/443
Sana29.12.2021
Hajmi1,14 Mb.
#77367
1   ...   262   263   264   265   266   267   268   269   ...   443
Bog'liq
C neural networks and fuzzy logic

Changes to the layer.cpp File

The implementation file for the layer class changes in the output_layer::update_weights() routine and the

constructor and destructor for output_layer. First, here is the constructor for output_layer. Changes are

highlighted in italic.

output_layer::output_layer(int ins, int outs)

{

int i, j, k;



num_inputs=ins;

num_outputs=outs;

weights = new float[num_inputs*num_outputs];

output_errors = new float[num_outputs];

back_errors = new float[num_inputs];

outputs = new float[num_outputs];

expected_values = new float[num_outputs];

cum_deltas = new float[num_inputs*num_outputs];

past_deltas = new float[num_inputs*num_outputs];

if ((weights==0)||(output_errors==0)||(back_errors==0)

       ||(outputs==0)||(expected_values==0)

       ||(past_deltas==0)||(cum_deltas==0))

       {

       cout << "not enough memory\n";

       cout << "choose a smaller architecture\n";

       exit(1);

       }

// zero cum_deltas and past_deltas matrix

for (i=0; i< num_inputs; i++)

       {

C++ Neural Networks and Fuzzy Logic:Preface

Adding the Momentum Term

264



       k=i*num_outputs;

       for (j=0; j< num_outputs; j++)

              {

              cum_deltas[k+j]=0;

              past_deltas[k+j=0;

              }

       }

}

The destructor simply deletes the new vectors:

output_layer::~output_layer()

{

// some compilers may require the array



// size in the delete statement; those

// conforming to Ansi C++ will not

delete [num_outputs*num_inputs] weights;

delete [num_outputs] output_errors;

delete [num_inputs] back_errors;

delete [num_outputs] outputs;



delete [num_outputs*num_inputs] past_deltas;

delete [num_outputs*num_inputs] cum_deltas;

}

Now let’s look at the update_weights() routine changes:



void output_layer::update_weights(const float beta,

const float alpha)

{

int i, j, k;



float delta;

// learning law: weight_change =

//             beta*output_error*input + alpha*past_delta

for (i=0; i< num_inputs; i++)

       {

       k=i*num_outputs;

       for (j=0; j< num_outputs; j++)

              {



delta=beta*output_errors[j]*(*(inputs+i))

+alpha*past_deltas[k+j];



              weights[k+j] += delta;

              cum_deltas[k+j]+=delta; // current cycle

              }

       }

}

The change to the training law amounts to calculating a delta and adding it to the cumulative total of weight



changes in cum_deltas. At some point (at the start of a new cycle) you need to set the past_deltas vector to

the cum_delta vector. Where does this occur? Since the layer has no concept of cycle, this must be done at

the network level. There is a network level function called update_momentum at the beginning of each cycle

that in turns calls a layer level function of the same name. The layer level function swaps the past_deltas

vector and the cum_deltas vector, and reinitializes the cum_deltas vector to zero. We need to return to the

layer.h file to see changes that are needed to define the two functions mentioned.

class output_layer:   public layer

{

protected:



C++ Neural Networks and Fuzzy Logic:Preface

Adding the Momentum Term

265



       float * weights;

       float * output_errors; // array of errors at output

       float * back_errors; // array of errors back−propagated

       float * expected_values;     // to inputs

       float * cum_deltas;   // for momentum

       float * past_deltas;   // for momentum

  friend network;

public:


       output_layer(int, int);

       ~output_layer();

       virtual void calc_out();

       void calc_error(float &);

       void randomize_weights();

       void update_weights(const float, const float);



void update_momentum();

       void list_weights();

       void write_weights(int, FILE *);

       void read_weights(int, FILE *);

       void list_errors();

       void list_outputs();

};

class network



{

private:


layer *layer_ptr[MAX_LAYERS];

    int number_of_layers;

    int layer_size[MAX_LAYERS];

    float *buffer;

    fpos_t position;

    unsigned training;

public:

  network();

    ~network();

               void set_training(const unsigned &);

               unsigned get_training_value();

               void get_layer_info();

               void set_up_network();

               void randomize_weights();

               void update_weights(const float, const float);

void update_momentum();

               ...

At both the network and output_layer class levels the function prototype for the update_momentum

member functions are highlighted. The implementation for these functions are shown as follows from the




Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   262   263   264   265   266   267   268   269   ...   443




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish