C++ Neural Networks and Fuzzy Logic: Preface


 = (1, 0, 1, 1), 1



Download 1,14 Mb.
Pdf ko'rish
bet186/443
Sana29.12.2021
Hajmi1,14 Mb.
#77367
1   ...   182   183   184   185   186   187   188   189   ...   443
Bog'liq
C neural networks and fuzzy logic

1

 = (1, 0, 1, 1),



1

 = (0, 1, 1), and X



2

 =

(0, 1, 1, 0), Y



2

 = (1, 0, 1). Naturally, the weight matrix is different, as is its transpose, correspondingly. As

stated before, the weights do not change during the operation of the network with whatever inputs presented to

C++ Neural Networks and Fuzzy Logic:Preface

Weights and Training

155



it. The results are as shown in Table 8.1 below.

Table 8.1 Results for the Example

Input vectoractivationoutput vector

X

1



 = (1, 0, 1, 1)(−4, 4, 2)(0, 1, 1) = Y

1

X



2

 = (0, 1, 1, 0)(2, −2, 2)(1, 0, 1) = Y

2

Y

1



 = (0, 1, 1)(2, −2, 2, 2)(1, 0, 1, 1) = X

1

Y



2

 = (1, 0, 1)(−2, 2, 2, −2)(0, 1, 1,0) = X

2

You may think that you will encounter a problem when you input a new vector and one of the neurons has



activation 0. In the original example, you did find this situation when you got the third output neuron’s

activation as 0. The thresholding function asked you to use the same output for this neuron as existed in the

earlier time cycle. So you took it to be 1, the third component in (0, 1, 1). But if your input vector is a new X

vector for which you are trying to find an associated Y vector, then you do not have a Y component to fall

back on when the activation turns out to be 0. How then can you use the thresholding function as stated?

What guidance do you have in this situation? If you keep track of the inputs used and outputs received thus

far, you realize that the Field B (where you get your Y vector) neurons are in some state, meaning that they

had some outputs perhaps with some training vector. If you use that output component as the one existing in

the previous cycle, you have no problem in using the thresholding function.

As an example, consider the input vector X




Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   182   183   184   185   186   187   188   189   ...   443




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish