Binom eng dvi


Amazing properties of binomial coefficients - 2



Download 205,42 Kb.
bet3/8
Sana01.01.2022
Hajmi205,42 Kb.
#301843
1   2   3   4   5   6   7   8
Bog'liq
1-1en(uz-Latn)

Amazing properties of binomial coefficients - 2


“The official theoretical source” for this set of problems is Vinberg’s article [1]. Particularly the following theorems are considered to be known.

      1. Wilson’s theorem. For any prime p (and for primes only) the equivalence holds (p − 1)! ≡ −1 (mod p).

      2. Lukas’ theorem. Write the numbers n and k in base p:


d 1 0 1 0d−1 d d−1
n = n pd + n pd1 + . . . + n p + n , k = k pd + k pd1 + . . . + k p + k . (1)


k
Then n
nd kd
nd−1 kd−1

· . . . · n1

k1

n0 (mod p) .


      1. k

        k0
        Kummer’s theorem. The exponent ordp n is equal to the number of “carries” when we add k and £ = n k in

base p.


      1. p
        Wolstenholme’s theorem. If p 5 then 2p

≡ 2 (mod p3), or, that is the same, 2p1




k
p−1
≡ 1 (mod p3).


0
Remind that 0

= 1, n

= 0 for k > n and for k < 0 by definition.


We denote by p a prime number. For any natural n denote by (n!)p the product of all integers from 1 to n not divisible by p. If a number p is given the symbols ni, mi etc. denote the digits of numbers n, m etc. in base p.
* * *


  1. Arithmetical triangle and divisibility






    1. 2
      a) Prove that the first 3k rows of 3-arithmetical Pascal triangle contain 1(6k + 4k) residues “1” and


2
1 (6k − 4k) residues “2”.

  1. Find the number of zero elements in the first 5k rows of 5-arithmetical Pascal triangle.

  2. Find the number of non-zero elements in the first pk rows of p-arithmetical Pascal triangle.

    1. Prove that the number of 1’s in the first m rows of 2-arithmetical Pascal triangle equals

nL−1
i=0
mi · 2
n−1 m i

k=i+1 k · 3 .

If m = 2α1 + 2α2 + . . . + 2αr , where α1 > α2 > . . . > αr, then we can rewrite the last expression in the form

3α1 + 2 · 3α2 + 22 · 3α3 + . . . + 2r1 · 3αr .




    1. Consider n-th row of Pascal triangle modulo 2 as binary expansion of some integer Pn. Prove that

Pn = Fi1 · . . . · Fis ,


1 F = 2 + 1s i
where i , . . . , i are numbers of positions where 1’s occur in the binary expansion of n, and 2i is

i-th Fermat number.

    1. Prove that the number of non-zero elements in n-th row of p-arithmetical Pascal triangle equals

d

(ni + 1).



i=0

    1. a) All the binomial coefficients

n , where 0 < k < n, are divisible by p if and only if n is a power of p.

b) All the binomial coefficients

k


k
n , where 0 � k n, are not divisible by p if and only if n + 1 is

divisible by pd, in other words, all the digits of n, except the leftmost, in base p are equal to p − 1.

    1. Let 0 < k < n + 1. Prove that if n . p and n . p, then n+1 . p, except the case, when n + 1 is

divisible by p.

k−1 . k . k .



  1. Generalization of Wilson’s and Lukas’ theorems






    1. p
      Prove that ord (n!) = n (nd + . . . + n1 + n0) .

p − 1

    1. Prove the following generalizations of Wilson’s theorem. a) (−1)[n/p](n!)pn0! (mod p);



  1. Prove that for p 3

(pq!)p ≡ −1 (mod pq) ,

and for p = 2, q 3 (pq!)p ≡ 1 (mod pq).




  1. pµ

    0

    1

    d

    p
    n! (1)µn !n ! . . . n ! (mod p), where µ = ord (n!)


f = ordp(
n


    1. k
      Generalized Lukas’ theorem. Let r = n k, ). Then


(

1 n n0!

)( n1! )

( nd! )




p k

≡ (−1)



k !r !

k !r !

. . .


k !r !

(mod p)



0 0 1 1 d d


    1. a) Prove that (1 + x)pd ≡ 1 + xpd (mod p) for all x = 0, 1, . . . , p − 1.

b) Prove Laukas’ theorem algebraically.

    1. a) Let m, n, k be nonnegative inte ger s, and (n, k) = 1. Prove that Ck

≡ 0 (mod n).



b) Prove that if n . pk

, m . p, then



mn


m
n . pk.






n n a d

Let fn,a =

( k k=0

) . Prove that fn,a
i=0

fni,a (mod p).




  1. Variations on Wolstenholme’s theorem



4.1. Prove that 1 + 1 + . . . + 1 0 (mod p2).

1 2 p − 1



    1. Let p = 4k + 3 be a prime number. Find 1

02 + 1

1

+ 12 + 1

1

+ . . . + (p 1)2 + 1

(mod p).



    1. a) Let k be a nonnegative integer such that for any prime divisor p of the number m k is not

1 1 1



divisible by (p − 1). Prove that 1k + 2k + . . . + (p 1)k ≡ 0 (mod m) (summation over all fractions whose

denominators are coprime to m).

b) Let k be odd and (k + 1) . (p − 1). Prove that 1 + 1 + . . . + 1 ≡ 0 (mod p2).


. 1k 2k

(p − 1)k



    1. Prove that the equivalence (12) from Vinberg’s article holds in fact modulo p4.

    2. Prove that the following properties are equivalent 1) 2p1 ≡ 1 (mod p4);

1 1 1

1 p−1 1


3

2
2) +

1 2


+ . . . +

p − 1

≡ 0 (mod p ); 3)



1 12 + 22

+ . . . +

(p − 1)2

≡ 0 (mod p ).



    1. a) Prove algebraically that for any prime p and arbitrary k and n ( pk k .

2. (In Vinberg’s

article this fact is proven combinatorially.

pm m

) . p



pk

k .

b) Prove the statement (9) form Vinberg’s article: for any prime p 5 and arbitrary k and n ( pm

    1. Let p 5. Prove that a) p2 ≡ p (mod p5); b) ps+1 ≡ ps (mod p2s+3).

m ) . p3.

p 1 p


    1. p2

      p
      Prove that p3 ≡ p2 (mod p8).



Amazing properties of binomial coefficients - 3




Additional problems to previous topics





    1. Prove that pn1 ≡ (−1)Sk (mod p), where S

is the sum of digits of k in base p.



k

    1. Prove that if the binomial coefficient (1), then

k


k
n is odd i.e. kini for all i = 0, 1, . . . , d in the notations of

n d

k

i=1

(−1)ki1ni+kini1 (mod 4).






    1. Prove that if there are no two consecutive 1’s in the binary expansion of n then all the odd entries in n-th row ≡ 1 (mod 4), otherwise the number of entries ≡ 1 (mod 4) equals the number of entries ≡ −1 (mod 4).

    2. Prove that the number of 5’s in each row of 8-arithmetical Pascal triangle is a power of 2. Prove the same for 1’s, 3’s and 7’s.

    3. Prove that if we consider all the elements of the two sets

2n − 1 2n − 1 2n

2n 1

1

, ,

1 3 5


, . . . ,

2n − 1

and {1, 3, 5, . . . , 2n − 1}



as a reminders modulo 2n, then these sets coincide.

    1. Prove that elements of a row of Pascal triangle are not coprime in the following sence. For any ε > 0

there exists N , such that for all integer n > N and k1, k2, . . . , k100 < εn the numbers

have a common divisor.

2n

,

n + k1

2n n + k2


, . . . ,

2n



n + k100

    1. a) The non negative numbers m > 1, n, k are given. Prove that at least one of the numbers n


n+1 k
, . . . ,
n+k k
is not divisible by m.
n

k ,

n+1


k
b) Prove that for each k there exist infinite set of numbers n, such that all the numbers ,


k
n+k1 are divisible by m.

k , . . . ,

    1. Prove that for n > 1 2n+1 − 2n is divisible by 22n+2.

2n 2n−1

p−1 p1

p−1 3



    1. Prove that for p 5 (−1) 2

p−1 4

2

(mod p ).






Download 205,42 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish