Big Data management in smart grid: concepts, requirements and implementation



Download 1,86 Mb.
Pdf ko'rish
bet10/20
Sana07.03.2022
Hajmi1,86 Mb.
#485852
1   ...   6   7   8   9   10   11   12   13   ...   20
Bog'liq
s40537-017-0070-y

Big Data for smart grid
Big Data technologies are a good opportunity for utilities to bring new methodologies, 
evaluation models and applications and improve data management in smart grids.
Big Data life cycle
Big Data can be defined as a huge quantity of datasets, but in fact it includes other 
features. In addition to (1) the volume, Big Data is based on (2) the variety to present 
various data formats (structured, semi-structured or unstructured), (3) the velocity to 
provide timeliness requirements, (4) the value to give the ability to extract the mean-
ing from the collected datasets, (5) the variability to provide inconsistency concept of 
the data, and (6) veracity to work on the trustworthiness of the data [
18
]. Figure 
5
 pre-
sents Big Data technologies for smart grid, in it different levels from data sources to 
visualization.
Data sources
Actually, there are distinct data classes according to the type of extracted values: (i) 
Operational data which is the electrical data of the grid that represent real and reac-
tive power flows, demand response capacity, voltage etc. (ii) Non-operational data is not 
related to grid power but it refers to master data, data on power quality and reliability 
etc. (iii) Meter usage data is another kind of data associated to power usage and demand 
values such as average, peak and time of the day etc. (iv) Event message data comes from 
smart grid devices events like voltage loss/restoration, fault detection event etc. Finally, 
(v) Metadata, which is used to organize and interpret all the other kind of data. All these 
data are collected from several sources such as meters, sensors, devices, substations, 
Fig. 5
Big Data architecture for smart grid. Big Data life cycle is composed by five phases: data sources, data 
integration, data storage, data analysis and data visualization


Page 11 of 19
Daki 
et al. J Big Data (2017) 4:13 
mobile data terminals, control devices, intelligent electronic devices, distributed energy 
resources, customer devices and historical data.

Download 1,86 Mb.

Do'stlaringiz bilan baham:
1   ...   6   7   8   9   10   11   12   13   ...   20




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish