Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet86/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   82   83   84   85   86   87   88   89   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

IURP

NHUDV


LPSRUW

PRGHOV


OD\HUV >OD\HURXWSXW IRUOD\HULQPRGHOOD\HUV>@@

PRGHOBOD\HUV PRGHOV0RGHO LQSXWV PRGHOLQSXWRXWSXWV OD\HUV 

DFWLYDWLRQV PRGHOBOD\HUVSUHGLFW [BWUDLQ 

ILJ SOWILJXUH ILJVL]H 

SOWVXESORW 

SOWWLWOH 2ULJLQDO

SOWLPVKRZ [BWUDLQ>@UHVKDSH  FPDS JUD\

SOW[WLFNV >@

SOW\WLFNV >@

IRU

I

LQ

UDQJH  

SOWVXESORW I

SOWWLWOH &RQYROXWLRQDOOD\HUGI

OD\HUBDFWLYDWLRQ DFWLYDWLRQV>I@

SOWLPVKRZ OD\HUBDFWLYDWLRQ>@FPDS JUD\

SOW[WLFNV >@

SOW\WLFNV >@

SOWVKRZ



Figure 3-52.  Code to generate graphs of what the images look like at various 

stages of the model

Chapter 3   IntroduCtIon to deep LearnIng




111

As the image passes through the convolutional layers, its dimensions get reduced 

and the patterns become more apparent. While to us that might not look so much 

like a three, the model identifies those patterns from the original image and bases its 

prediction on that.

So now you have a much better understanding of what a CNN is and how Keras can 

be used to easily create and train your very own deep neural network. If you would like to 

explore the framework further, feel free to check out Appendix A. If you have any further 

questions, or would like to explore Keras beyond what’s in Appendix A, check out the 

official Keras documentation.




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   82   83   84   85   86   87   88   89   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish