Beginning Anomaly Detection Using


Artificial Neural Networks



Download 26,57 Mb.
Pdf ko'rish
bet63/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   59   60   61   62   63   64   65   66   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

 Artificial Neural Networks

Artificial neural networks are layers of interconnected nodes, or artificial neurons, that 

function in a way inspired by biological neural networks. Figure 

3-1

 shows an example of 



a neuron.

Figure 3-1.  An example of what a neuron can look like

Chapter 3   IntroduCtIon to deep LearnIng




75

Inputs are taken in through the dendrites, after which the neuron decides whether 

or not to fire. Upon firing, the neuron sends a signal down the axon to its terminal axons, 

where the signals are output to any other neurons. This transfer of signals is called a 

synapse, which is modeled in Figure 

3-2


.

We use a similar concept in artificial neural networks (Figure 

3-3

).

Figure 3-2.  How two neurons might connect to form a chain and transfer signals 



through that connection. The terminal axon of the first neuron connects to the 

dendrites of the second neuron

Figure 3-3.  How an artificial neuron in an artificial neural network can function. 

This mimicry of the biological neuron is the basis of artificial neural networks

Chapter 3   IntroduCtIon to deep LearnIng




76

In the case of this artificial neuron, we find the dot product between the input 

vector 


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   59   60   61   62   63   64   65   66   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish