Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet56/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   52   53   54   55   56   57   58   59   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

IRU

FRO


LQ

QRUPDOFROXPQV



LI

QRUPDO>FRO@GW\SH   REMHFW

HQFRGHG /DEHO(QFRGHU

HQFRGHGILW QRUPDO>FRO@

QRUPDO>FRO@ HQFRGHGWUDQVIRUP QRUPDO>FRO@

IRU

FRO


LQ

QRYHOWLHVFROXPQV



LI

QRYHOWLHV>FRO@GW\SH  REMHFW

HQFRGHG /DEHO(QFRGHU

HQFRGHGILW QRYHOWLHV>FRO@

QRYHOWLHV>FRO@ HQFRGHGWUDQVIRUP QRYHOWLHV>FRO@

Figure 2-45.  Applying the label encoder to the data sets

IRU

I

LQ

UDQJH  

QRUPDO QRUPDOLORF>QSUDQGRPSHUPXWDWLRQ OHQ QRUPDO @

GI SGFRQFDW >QRUPDO>@QRUPDO>@@

GIBYDOLGDWH QRUPDO>@

[BWUDLQ[BWHVW WUDLQBWHVWBVSOLW GIWHVWBVL]H 

UDQGRPBVWDWH 

[BYDO GIBYDOLGDWH

Figure 2-46.  Shuffling the entries in the normal data set, and defining the 

training, testing, and validation sets

Chapter 2   traditional Methods of anoMaly deteCtion




66

You are only using a subset of the entire data set to train the model on because the 

larger the training data, the longer it takes for the OC-SVM to train.

Run the code in Figure 

2-48

 to declare and initialize the model.



By default, the 

kernel is set to ‘rbf’, meaning radial basis function. It is similar to the 

circular decision boundary that you saw in the earlier examples, and you use it here 

because you want to define a circular boundary around a set of regions that contain 

normal data. As seen in the earlier examples, any points that fall outside of the region 

are to be considered anomalies. 

Gamma tells the model how much you want to consider 

points further from the hyperplane. Since it is pretty small, this means you want to 

emphasize the points farther away. The 


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   52   53   54   55   56   57   58   59   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish