Beginning Anomaly Detection Using


IURP VNOHDUQPHWULFV LPSRUW



Download 26,57 Mb.
Pdf ko'rish
bet49/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   45   46   47   48   49   50   51   52   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

IURP

VNOHDUQPHWULFV

LPSRUW

URFBDXFBVFRUH

DQRPDOLHV DQRPDO\BVFRUHV!

PDWFKHV \BYDO  

OLVW

HQFRGHGFODVVHVB LQGH[ QRUPDO



DXF URFBDXFBVFRUH DQRPDOLHVPDWFKHV

SULQW


$8&^`IRUPDW  DXF

Figure 2-24.  Classifying anomalies based on a threshold that you picked from a 

graph and generating the AUC score from that set of labels for each point

Figure 2-25.  The generated AUC score after running the code

Chapter 2   traditional Methods of anoMaly deteCtion




50

You should get a graph like Figure 

2-27

.

There is a similar pattern of what appear to be anomalous data to the left of -0.15. 



Again, assume that there are expected outliers, and pick any average path length less 

than -0.19 as the cutoff for anomalies.

Run the code in Figure 

2-28


.

DQRPDO\BVFRUHVBWHVW LVRODWLRQBIRUHVWGHFLVLRQBIXQFWLRQ [BWHVW

SOWILJXUH ILJVL]H 

SOWKLVW DQRPDO\BVFRUHVBWHVWELQV 

SOW[ODEHO $YHUDJH3DWK/HQJWKV IRQWVL]H 

SOW\ODEHO 1XPEHURI'DWD3RLQWV IRQWVL]H 

SOWVKRZ

Figure 2-26.  Creating a histogram like in Figure 

2-23

 for the testing set instead of 

the validation set

Figure 2-27.  A histogram like in Figure 

2-23

, but for the testing set

Chapter 2   traditional Methods of anoMaly deteCtion




51

It should look like Figure 

2-29

.

That’s really good! It seems to perform very well on both the validation data and the 



test data.

Hopefully by now you will have gained a better understanding of what an isolation 

forest is and how to apply it. Remember, an isolation forest works well for multi- 

dimensional data (in this case, you had 41 columns after dropping the service column) 

and can be used for 


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   45   46   47   48   49   50   51   52   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish