Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet237/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   233   234   235   236   237   238   239   240   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

 Categorical  Accuracy

keras.metrics.categorical_accuracy(y_true, y_pred)

Since most problems tend to involve categorical cross entropy (implying more than 

two classes in the data set), this tends to be the default accuracy metric when ‘accuracy’ 

is passed into the model.compile() function.

Instead of finding all of the instances where the true labels and rounded predictions 

match, categorical accuracy finds all of the instances where the true labels and 

predictions have a maximum value in the same spot.

Recall that for categorical cross entropy, the labels are one-hot encoded. Therefore, 

the truth labels only have one maximum per entry, along with the predictions (though 

again, one value will be really close to one while the others are really close to zero). What 

categorical accuracy does is check if the maximum value in the entry is in the same 

position for both y_true and for y_pred.

Once it’s found all those instances, it finds the mean of the result, leading to an 

accuracy value.

Essentially, it’s a similar equation to the one for binary accuracy, but with a different 

condition regarding y_true and y_pred.

Appendix A   intro to KerAs




345

The function is defined by Keras as shown in Figure 

A-24

.


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   233   234   235   236   237   238   239   240   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish