Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet185/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   181   182   183   184   185   186   187   188   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

semi-supervised 

anomaly detection.

 Encoder-Decoder Temporal Convolutional Network

The version of the encoder-decoder TCN you will be exploring involves a combination 

of one-dimensional causal convolutional and pooling layers to encompass the encoding 

stage and a series of upsampling and one-dimensional causal convolutional layers to 

comprise the decoding stage. The convolutional layers in this model aren’t dilated, but 

they still count as layers of a temporal convolutional network. To better understand the 

structure of this model, take a look at Figure 

7-46


.

Chapter 7   temporal Convolutional networks




284

The diagram might seem pretty complicated, so let’s break it down layer by layer.

First, look at the encoding stage and start with the input layer at the very bottom. 

From this layer, you perform a 




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   181   182   183   184   185   186   187   188   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish