Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet175/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   171   172   173   174   175   176   177   178   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure 7-10.  The new input vector weights

0.5   0.2   0.4

Filter Weights

Figure 7-11.  The new filter weights

Input:


0.5   0.2   0.4

Filter Weights:

Output:

2

8   


12

4   


6

4   2   12



1 + 2.4 + 2.4

*

=



Spacing of 1

5.8

Figure 7-12.  Calculating the first entry in the output factor using dilated 

one- dimensional convolutions with a dilation factor of two

Chapter 7   temporal Convolutional networks




265

Input:


0.5   0.2   0.4

Filter Weights:

Output:

2   


8

12

4

6   

4

2   12


4 + 0.8 + 1.6

*

=



5.8

6.4

Figure 7-13.  The next set of three input vector values are multiplied with the filter 

weights to produce the next output vector value

Input:


0.5   0.2   0.4

Filter Weights:

Output:

2   8   


12

4   


6

4   


2

12

6 + 1.2 + 0.8

*

=

5.8   6.4



8

Figure 7-14.  The third set of three input vector values are multiplied with the filter 

weights to produce the next output vector value

Input:


0.5   0.2   0.4

Filter Weights:

Output:

2   8   12



4

6   


4

2   


12

2 + 0.8 + 4.8

*

=



5.8   6.4   8

7.6  

Figure 7-15.  The final set of three input vector values are multiplied with the filter 

weights to produce the last output vector value

Chapter 7   temporal Convolutional networks




266

Now that we’ve covered what a 



dilated convolution looks like in the context of one- 

dimensional convolutions, let’s look at the difference between an 



acausal and a casual 

dilated convolution. To illustrate this concept, assume that both examples are referring 

to a set of dilated one-dimensional convolutional layers. With that in mind, Figure 

7-16


 

shows an 



acausal network.

It might not be that apparent from the way the architecture is structured, but if you 

think of the input layer as a sequence of some data going forward in time, you might be 

able to see that information from the future would be accounted for when selecting the 

output. In a 

casual network, we only want information that we’ve learned up until the 

present, so none of the information from the future will be accounted for in the model’s 

predictions. Figure 

7-17


 shows what a 

causal network looks like.

Input Layer

Hidden Layer 1

Hidden Layer 2

Output Layer

Figure 7-16.  An acausal dilated network. The first hidden layer has a dilation 

factor of two, and the second hidden layer has a dilation factor of four. Notice how 

inputs “forward in the sequence” contribute to the next layer’s node as well

Chapter 7   temporal Convolutional networks




267

From this, we can see how the linear nature of time is preserved in the model, and 

how no information from the future would be learned by the model. In casual networks, 

only information from the past until the present is considered by the model. The dilated 

temporal convolutional network we are referring to has a similar model architecture, 

utilizing dilated causal convolutions in each layer preceding the output layer.




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   171   172   173   174   175   176   177   178   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish