Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet156/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   152   153   154   155   156   157   158   159   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure 6-34.  Plotting the testing and predicted datasets

Figure 6-33.  Code to compute the threshold

Chapter 6   Long Short-term memory modeLS 




241

Figure 


6-35

 shows the code to classify a datapoint as anomaly or normal.

Figure 

6-36


 shows the code to plot the data points with respect to the threshold.

Figure 6-35.  Code to classify a datapoint as anomaly or normal

Figure 6-36.  Code to plot the data points with respect to the threshold

Chapter 6   Long Short-term memory modeLS 




242

Figure 


6-37

 shows the code to append the anomaly flag to the dataframe.



Figure 6-37.  Code to append the anomaly flag to the dataframe

Figure 


6-38

 shows the code to generate a graph showing the anomalies.



Figure 6-38.  A graph showing anomalies

Chapter 6   Long Short-term memory modeLS 




243

In above graph you can spot an anomaly around Thanksgiving Day, one around New 

Year Eve, and another one possibly on a snow storm day in January.

If you play around with some of the parameters you used, such as number of time_

steps, threshold cutoffs, epochs of the neural network, batch size, and hidden layer, you 

will see different results.

A good way to improve the detection is to curate good normal data, use identified 

anomalies, and put it in the mix to have a way to tune the parameters until you get good 

matches on the identified anomalies.


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   152   153   154   155   156   157   158   159   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish