Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet78/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   74   75   76   77   78   79   80   81   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure 3-31.  Print the shapes of the transformed data

Figure 3-32.  The resulting output

Chapter 3   IntroduCtIon to deep LearnIng




94

Note  the \ character tells python that you want to continue to the next line. 

Without it, the code would not run because python doesn’t see the end of the string 

denoted by the second “, but what \ tells python is to continue on the next line.

Now you can move on to defining and compiling your model.

Run the code in Figure 

3-33


.

PRGHO 6HTXHQWLDO

PRGHODGG &RQY' NHUQHOBVL]H  

DFWLYDWLRQ UHOX 

LQSXWBVKDSH LQSXWBVKDSH

PRGHODGG &RQY'   

DFWLYDWLRQ UHOX

PRGHODGG 0D[3RROLQJ' SRROBVL]H 

PRGHODGG 'URSRXW 

PRGHODGG )ODWWHQ

PRGHODGG 'HQVH DFWLYDWLRQ UHOX

PRGHODGG 'URSRXW 

PRGHODGG 'HQVH QBFODVVHV

DFWLYDWLRQ VRIWPD[

PRGHOFRPSLOH ORVV NHUDVORVVHVFDWHJRULFDOB

FURVVHQWURS\

RSWLPL]HU NHUDVRSWLPL]HUV$GDP 

PHWULFV > DFFXUDF\ @

PRGHOVXPPDU\

Figure 3-33.  Code to define a deep learning model and add layers to it

Chapter 3   IntroduCtIon to deep LearnIng




95

In Keras, the 



sequential model is a stack of layers. The Conv2D is a two-dimensional 

convolutional layer.

In convolutional neural networks, a 


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   74   75   76   77   78   79   80   81   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish