Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet251/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   247   248   249   250   251   252   253   254   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure A-41.  Finding the dot product of two placeholder variables c and d using 

the Keras back end

Figure A-42.  Finding the sum of c along different axes using the Keras back end

Figure A-43.  Finding the mean of c using the Keras back end

Those are just some of the most basic functions available through the back end. The 

complete list of backend functions is available at 

https://keras.io/backend/

.

Appendix A   intro to KerAs




360

 Summary

Keras is a great tool to help you easily get involved with creating, training, and testing deep 

learning models, and provides a great deal of functionality while abstracting away the 

complicated syntax that TensorFlow has. Keras by itself can be sufficient, but as the content 

gets more advanced, it's better to have the level of customization and flexibility that 

TensorFlow or PyTorch offers. Keras allows you to use a wide variety of functions through 

the back end, allowing you to write custom layers, custom models, metrics, loss functions, 

and so on, but for the most customization and flexibility in how you want your neural 

networks to be (especially if you want to make completely new types of neural networks), 

then either tf.keras + TensorFlow or PyTorch would be better suited for your needs.

Appendix A   intro to KerAs



361

© Sridhar Alla, Suman Kalyan Adari 2019 

S. Alla and S. K. Adari, Beginning Anomaly Detection Using Python-Based Deep Learning,  

https://doi.org/10.1007/978-1-4842-5177-5




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   247   248   249   250   251   252   253   254   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish