Beginning Anomaly Detection Using


Semi-supervised anomaly detection



Download 26,57 Mb.
Pdf ko'rish
bet24/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   20   21   22   23   24   25   26   27   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Semi-supervised anomaly detection involves partially labeling the training data 

set. In the context of anomaly detection, this can be a case where only the normal data 

is labeled. Ideally, the model will learn what normal data points look like, so that the 

model can flag anomalous data points as anomalies since they differ from normal data 

points. Examples of models that can use semi-supervised learning for anomaly detection 

include autoencoders, which you will learn about in Chapter 

4

.

Unsupervised anomaly detection, as the name implies, involves training the model 



on unlabeled data. After the training process, the model is expected to know what 

data points are normal and what points are anomalous within the data set. Isolation 

forest, a model you will explore in Chapter 

2

, is one such model that can be used for 



unsupervised anomaly detection.

Chapter 1   What Is anomaly DeteCtIon?




20


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   20   21   22   23   24   25   26   27   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish